

Issue Date: Ref. Report No.

November 4, 2019 ISL-19LE676CE35

		itel. itepoir i
Product Name	:	TWISTER System
Model(s)	:	TWISTER(L)-CI370D
Brand	:	LEX
Responsible Party	:	LEX COMPUTECH CO.,LTD.
Address	:	3F.No.77, LI DE St. Chung Ho District 235
		New Taipei City, Taiwan

We, International Standards Laboratory Corp., hereby certify that:

The sample ISL received which bearing the trade name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in European Council Directive EMC Directive 2014/30/EU. And Our laboratories is the accredited laboratories and are approved according to ISO/IEC 17025. The device was passed the test performed according to :

Standards:

EN 55032:2015+AC: 2016, CISPR 32: 2015+COR1:2016: Class A AS/NZS CISPR 32:2015: Class A EN 61000-3-2:2014 and IEC 61000-3-2:2014 EN 61000-3-3:2013 and IEC 61000-3-3: 2013 EN 55035: 2017 and CISPR 35: 2016 EN 61000-4-2: 2009 and IEC 61000-4-2: 2008 EN 61000-4-3: 2006+A1: 2008 +A2: 2010 and IEC 61000-4-3: 2006+A1: 2007+A2: 2010 EN 61000-4-3: 2016+A1: 2007+A2: 2010 EN 61000-4-5: 2014+A1:2017 and IEC 61000-4-5: 2014+A1:2017 EN 61000-4-6: 2014+AC: 2015 and IEC 61000-4-6:2013 EN 61000-4-8: 2010 and IEC 61000-4-8: 2009 EN 61000-4-11: 2004+A1:2017 and IEC 61000-4-11: 2004+A1:2017

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The determination of the test results is determined by customer agreement, regulations or standard document specifications.

The Laboratory evaluates measurement inaccuracies based on regulatory or standard document specifications and is listed in the report for reference. The quantitative project part judges the conformity of the test results based on the evaluation results of the standard cited uncertainty, and the qualitative project does not temporarily evaluate the measurement uncertainty.

Angus One

Angus Chu / Director

International Standards Laboratory Corp. LT LAB: No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan Tel: 886-3-407-1718; Fax: 886-3-407-1738

Contents of Report

1. (General	1
1.1	Certification of Accuracy of Test Data	1
1.2	Test Standards	2
1.3	Description of EUT	5
1.4	Description of Support Equipment	6
1.5	Software for Controlling Support Unit	
1.6	I/O Cable Condition of EUT and Support Units	
2. F	Power Main Port Conducted Emissions	
2.1	Test Setup and Procedure	.10
2.2	Conduction Test Data: Configuration 1	
2.3	Test Setup Photo	
3. Т	Felecommunication Port Conducted Emissions	
3.1	Test Setup and Procedure	
3.2	Test Data: Configuration 1\LAN1\100M	.18
3.3	Test Data: Configuration 1\LAN1\10M	
3.4	Test Data: Configuration 1\LAN1\1G	
3.5	Test Data: Configuration 1\LAN2\100M	
3.6	Test Data: Configuration 1\LAN2\10M	
3.7	Test Data: Configuration 1\LAN2\1G	
3.8	Test Data: Configuration 1\LAN3\100M	
3.9	Test Data: Configuration 1\LAN3\10M	
3.10	Test Data: Configuration 1\LAN3\1G	.26
3.11	Test Data: Configuration 1\LAN4\100M	
3.12	Test Data: Configuration 1\LAN4\10M	
3.13	Test Data: Configuration 1\LAN4\1G	
3.14	Test Data: Configuration 1\LAN5\100M	
3.15	Test Data: Configuration 1\LAN5\10M	
3.16	Test Data: Configuration 1\LAN5\1G	
3.17	Test Data: Configuration 1\LAN6\100M	
3.18	Test Data: Configuration 1\LAN6\10M	
3.19	Test Data: Configuration 1\LAN6\1G	
3.20	Test Data: Configuration 1\LAN7\100M	
3.21	Test Data: Configuration 1\LAN7\10M	
3.22	Test Data: Configuration 1\LAN7\1G	
3.23	Test Data: Configuration 1\LAN8\100M	
3.24	Test Data: Configuration 1\LAN8\10M	
3.25	Test Data: Configuration 1\LAN8\1G	
3.26	Test Data: Configuration 1\LAN9\100M	
3.27	Test Data: Configuration 1\LAN9\10M	
3.28	Test Data: Configuration 1\LAN9\1G	
3.29	Test Setup Photo	
4. F	Radiated Disturbance Emissions	
4.1	Test Setup and Procedure	
4.2	Limit	
4.3	Radiation Test Data: Configuration 1	
4.4	Test Setup Photo	

Contents of Report

5. Voltage Disturbance Emissions at Antenna Terminals	56
5.1 Test Setup and Procedure	56
6. Differential Voltage Emissions	58
6.1 Test Setup and Procedure	58
7. Outdoor units of home satellite receiving systems	60
7.1 Test Setup and Procedure	
8. Electrostatic discharge (ESD) immunity	62
8.1 Test Specification and Setup	
8.2 Test Point	
8.3 Test Setup Photo	66
9. Radio-Frequency, Electromagnetic Field immunity	67
9.1 Test Specification and Setup	
9.2 Test Setup Photo	
10. Electrical Fast transients/burst immunity	69
10.1 Test Specification and Setup	
10.2 Test Setup Photo	71
11. Surge Immunity	72
11.1 Test Specification and Setup	72
11.2 Test Setup Photo	
12. Immunity to Conductive Disturbance	74
12.1 Test Specification and Setup	74
12.2 Test Setup Photo	75
13. Power Frequency Magnetic Field immunity	76
13.1 Test Specification and Setup	76
13.2 Test Setup Photo	
14. Voltage Dips, Short Interruption and Voltage Variation immunity	78
14.1 Test Specification and Setup	
14.2 Test Setup Photo	
15. Harmonics	80
15.1 Test Specification and Setup	80
15.2 Test Data: Configuration	82
15.3 Test Setup Photo	84
16. Voltage Fluctuations	85
16.1 Test Specification and Setup	85
16.2 Test Data: Configuration	
16.3 Test Setup Photo	
17. Appendix	
17.1 Appendix A: Test Equipment	
17.2 Appendix B: Uncertainty of Measurement	
17.3 Appendix C: Photographs of EUT Please refer to the File of ISL-19LE676P	93

1. General

1.1 Certification of Accuracy of Test Data

Standards:	Please refer to 1.2	
Equipment Tested:	TWISTER System	
Model:	TWISTER(L)-CI370D	
Brand:	LEX	
Applicant:	LEX COMPUTECH CO.,LTD.	
Sample received Date:	October 3, 2019	
Final test Date:	EMI: refer to the date of test data	
	EMS: October 29, 2019	
Test Site:	Chamber 02; Chamber 14; Conduction 02; Immunity 02	
Test Distance:	10M; 3M (above1GHz) (EMI test)	
Temperature:	refer to each site test data	
Humidity:	refer to each site test data	
Atmospheric Pressure:	86 kPa to 106 kPa	
Input power:	Conduction input power: AC 230 V / 50 Hz	
	Radiation input power: AC 230 V / 50 Hz	
	Immunity input power: AC 230 V / 50 Hz	
Test Result:	PASS	
Report Engineer:	Elly Duan	

Bear Perng Bear Perng Benson Chen

Approved By:

Benson Chen / Associate Director

Test Engineer:

1.2 Test Standards

The tests which this report describes were conducted by an independent electromagnetic compatibility consultant, International Standards Laboratory Corp. in accordance with the following

EN 55032:2015+AC:2016, CISPR 32: 2015+COR1:2016: Class A: Electromagnetic compatibility of multimedia equipment - Emission requirements.

AS/NZS CISPR 32:2015: Class A: Electromagnetic compatibility of multimedia equipment- Emission requirements

Performed Item	Test Performed	Deviation	Result
Conducted emissions from the AC mains power ports	Yes	No	PASS
Telecommunication Port Conducted Emissions (asymmetric mode)	Yes	No	PASS
Radiated emissions at frequencies below 1 GHz	Yes	No	PASS
Radiated emissions at frequencies above 1 GHz	Yes	No	PASS
Radiated emissions from FM receivers	N/A	N/A	N/A
Voltage Disturbance Emissions at Antenna Terminals	N/A	N/A	N/A
Differential voltage emissions	N/A	N/A	N/A
Outdoor units of home satellite receiving systems	N/A	N/A	N/A

Standard	Description	Results	Criteria
EN 61000-4-2:2009 IEC 61000-4-2:2008	Electrostatic Discharge	Pass	В
EN 61000-4-3:2006+A1:2008 +A2:2010 IEC 61000-4-3:2006+A1:2007+A2:2010	Radio-Frequency, Electromagnetic Field	Pass	А
EN 61000-4-4:2012 IEC 61000-4-4:2012	Electrical Fast Transient/Burst	Pass	В
EN 61000-4-5:2014+A1:2017 IEC 61000-4-5:2014+A1:2017	Surge	Pass	В
EN 61000-4-6:2014+AC:2015 IEC 61000-4-6:2013	Conductive Disturbance	Pass	А
EN 61000-4-8:2010 IEC 61000-4-8:2009	Power Frequency Magnetic Field	Pass	А
EN 61000-4-11:2004+A1:2017 IEC 61000-4-11:2004+A1:2017	Voltage Dips / Short Interruption and Voltage Variation		
	>95% in 0.5 cycle	Pass	В
	30% in 25 cycle	Pass	С
	>95% in 250 cycle	Pass	С

EN 55035:2017 and CISPR 35:2016: Information technology equipment-Immunity characteristics - Limits and methods of measurement.

Standard	Description	Results
EN 61000-3-2:2014 IEC 61000-3-2:2014	Limits for harmonics current emissions	Pass
EN 61000-3-3:2013 IEC 61000-3-3:2013	Limits for voltage fluctuations and flicker in low-voltage supply systems.	Pass

1.2.1 Performance Criteria for Compliance: EN 55035

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

1.3 Description of EUT

EUT

Description	TWISTER System
Condition	Pre-Production
Model	TWISTER(L)-CI370D
Serial Number	N/A
Highest working frequency	3.2GHz

The devices can be installed inside the EUT are listed below:

Component Vendor		Description		
Motherboard	LEX	CI370D		
CPU	Intel	i7-8700 3.2GHz		
Memory	DSL	DDR4 2133MHz 16G		
SSD(mSATA)	InnoDisk	64GB 3ME3		
Adapter	EDACPOWER	EA11301K-240		
Detailed information, please refer to user manual				

I/O Ports of EUT are listed below:

I/O Port Type	Quantity
DC 24V IN Port	2
DP Port	1
HDMI Port	1
COM Port	2
USB 3.0 Port	4
LAN Port(1G/100M/10M bps)	9
SFP+ Port (1Gbps)	2

All the devices listed below are chosen by the applicant to be the representative configuration for testing in this report.

Test configuration:

Configurations	1
Motherboard	LEX(Model: CI370D)
CPU	Intel i7-8700 3.2GHz
Memory	DDR4 2133MHz 16G*2
SSD	InnoDisk(Model: 3ME3)
Adapter	EDACPOWER (Model: EA11301K-240)

EMI Noise Source:

Please refer to the technical documents.

EMI Solution:

Please refer to the technical documents.

1.4 Description of Support Equipment

No	Unit	Model / Serial No.	Brand	Power Cord	FCC ID
1	27" LCD Monitor	P2715Qt S/N: N/A	DELL	Non-shielded	FCC DOC
2	27" LCD Monitor	P2715Qt S/N: N/A	DELL	Non-shielded	FCC DOC
3	USB Mouse	MOCZUL S/N: N/A	DELL	N/A	FCC DOC
4	USB Keyboard	SK-8175 S/N: N/A	DELL	N/A	FCC DOC
5	AKiTiO External HDD	SK2-U31AS-AKT S/N: N/A	AKiTiO	N/A	FCC DOC
6	AKiTiO External HDD	SK2-U31AS-AKT S/N: N/A	AKiTiO	N/A	FCC DOC
7	Personal Computer	3212-BK1 S/N: N/A	Lenovo	Non-shielded	FCC DOC
8	Modem	DM1414 S/N: N/A	Aceex	Non-shielded	FCC DOC
9	Modem	DM1414 S/N: N/A	Aceex	Non-shielded	FCC DOC
10	24" LCD Monitor	U2412M S/N: N/A	DELL	Non-shielded	FCC DOC
11	24" LCD Monitor	U2412M S/N: N/A	DELL	Non-shielded	FCC DOC
12	USB Mouse	MO56U0 S/N: N/A	DELL	N/A	FCC DOC
13	USB Keyboard	SK-8115 S/N: N/A	DELL	N/A	FCC DOC
14	Traveling Disk (3.0)	TS16GJF700 S/N: N/A	Transcend	N/A	FCC DOC
15	Traveling Disk (3.0)	TS16GJF700 S/N: N/A	Transcend	N/A	FCC DOC
16	Switch(PoE Ports)	TL-SF1008P	TP-LINK	Non-shielded	FCC DOC

For EMI test configuration support unit: 1~9,16 For EMS test configuration support unit: 7~16

International Standards Laboratory Corp.

1.5 Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

For EMI test configuration:

- 1. Send Color Bar to the 27" LCD Monitor.
- 2. Read and write data through EUT SSD.
- 3. Read and write AKiTiO External HDD through EUT USB3.0 port.
- 4. Send signal to the Modem through EUT COM Port.
- 5. Receive and transmit package of EUT to the Switch(PoE Ports) through EUT LAN Port.
- 6. Receive and transmit packet of EUT SFP+ port 1 to the EUT SFP+ port 2.
- 7. Repeat the above steps.

	File	Issue Date
LCD Monitor	Windows Media Player.exe	08/11/2013
EUT SSD	IntelEMC	04/11/2007
AKiTiO External HDD	IntelEMC	04/11/2007
Modem	IntelEMC	04/11/2007
LAN	Ping.exe	
SFP+	Ping.exe	

For EMS test configuration:

- 1. Send Color Bar to the 24" LCD Monitor.
- 2. Read and write data through EUT SSD.
- 3. Read and write Traveling Disk (3.0) through EUT USB3.0 port.
- 4. Send signal to the Modem through EUT COM Port.
- 5. Receive and transmit package of EUT to the Switch(PoE Ports) through EUT LAN Port.
- 6. Receive and transmit packet of EUT SFP+ port 1 to the EUT SFP+ port 2.
- 7. Repeat the above steps.

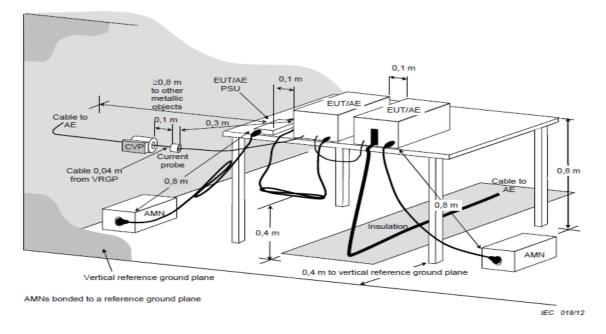
	File	Issue Date
LCD Monitor	Windows Media Player.exe	08/11/2013
EUT SSD	IntelEMC	04/11/2007
Traveling Disk (3.0)	IntelEMC	04/11/2007
Modem	IntelEMC	04/11/2007
LAN	Ping.exe	
SFP+	Ping.exe	

1.6 I/O Cable Condition of EUT and Support Units For EMI test configuration:

For EMI test configuration:							
Description	Path	Length	Shielding	Core	Remark		
AC Power cable	100V~240V to EUT Adapter SPS	1.8m	No	No			
Monitor cable	27" LCD Monitor to EUT DP Port	1.8m	Yes	No			
Monitor cable	27" LCD Monitor to EUT HDMI Port	1.8m	Yes	No			
Modem data cable*2	Modem data Modem serial port to EUT		Yes	No			
Keyboard Cable	USB Keyboard to EUT USB3.0 Port	1.8m	Yes	No			
Mouse Cable	Mouse Cable USB Mouse to EUT USB3.0 Port		Yes	No			
USB cable *2	AKiTiO External HDD to EUT USB 3.0 port	1.27m	Yes	No			
LAN data cable *9	LAN data cable *9 Switch(PoE Ports) LAN Port to EUT LAN Port		No	No	Cat 5e		
LAN data cable Switch(PoE Ports) LAN Port to Personal Computer LAN Port		3m	No	No	Cat 5e		
SFP+ fiber Cable	EUT SFP+ port 1 to EUT SFP+ port 2	3m	No	No	Fiber		

-9-

Shielding Description Path Length Core Remark 100V~240V to EUT AC Power cable 1.8m No No Adapter SPS 24" LCD Monitor to EUT Monitor cable 1.8m Yes No DP Port 24" LCD Monitor to EUT Monitor cable 1.8m Yes No HDMI Port Modem data Modem serial port to EUT 1.8m Yes No cable*2 COM Port USB Keyboard to EUT Keyboard Cable 1.8m Yes No USB3.0 Port USB Mouse to EUT Mouse Cable 1.8m Yes No USB3.0 Port Traveling Disk (3.0) to EUT USB cable *2 1.27m Yes No USB 3.0 port Switch(PoE Ports) LAN LAN data cable *9 10m No Cat 5e No Port to EUT LAN Port Switch(PoE Ports) LAN LAN data cable Port to Personal Computer 3m No No Cat 5e LAN Port EUT SFP+ port 1 to EUT SFP+ fiber Cable No Fiber 3m No SFP+ port 2


For EMS test configuration:

2. Power Main Port Conducted Emissions

2.1 Test Setup and Procedure

2.1.1 Test Setup

2.1.2 Test Procedure

The measurements are performed in a shielded room test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (50ohm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

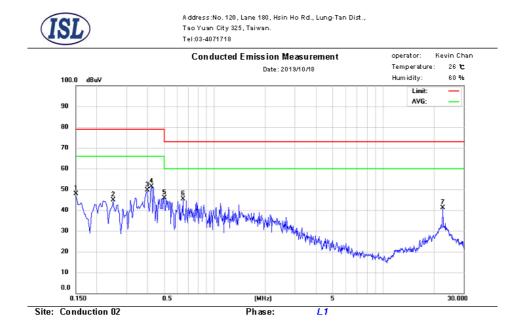
The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, live and neutral, were measured. All of the interface cables were manipulated according to EN 55032 requirements.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	150kHz30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9kHz

2.1.4 Limit


Conducted emissions from the AC mains power ports of Class_A equipment:

Frequency	QP	AV		
MHz	dB(µV)	dB(µV)		
0.15-0.50	79	66		
0.50-30 73 60				
Note: The lower limit shall apply at the transition frequencies				

Conducted emissions from the AC mains power ports of Class B equipment:

Frequency	QP	AV			
MHz	dB(µV)	dB(µV)			
0.15-0.50	66-56	56-46			
0.50-5.0	56	46			
5.0-30 60 50					
Note: The lower limit shall apply at the transition frequencies					

No.	Frequency (MHz)	QP_R (dBuV)	A VG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.150	36.06	28.17	9.63	45.69	79.00	-33.31	37.80	66.00	-28.20
2	0.250	32.30	25.11	9.63	41.93	79.00	-37.07	34.74	66.00	-31.26
3	0.398	34.10	19.27	9.63	43.73	79.00	-35.27	28.90	66.00	-37.10
4	0.422	36.72	18.33	9.63	46.35	79.00	-32.65	27.96	66.00	-38.04
5	0.502	32.83	16.67	9.64	42.47	73.00	-30.53	26.31	60.00	-33.69
6	0.650	27.79	17.07	9.64	37.43	73.00	-35.57	26.71	60.00	-33.29
7	22.570	30.78	27.20	9.89	40.67	73.00	-32.33	37.09	60.00	-22.91

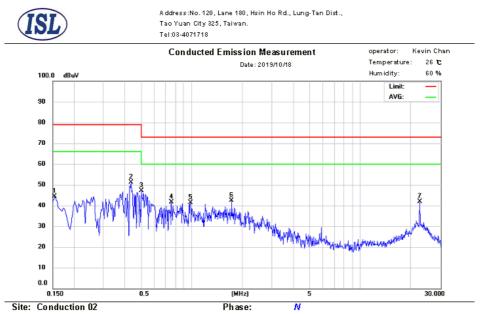
Note:

Margin = QP/AVG Emission - Limit

QP/AVG Emission = QP_R/AVG_R + Correct Factor

Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit


The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

International Standards Laboratory Corp.

- Neutral

No.	Frequency (MHz)	QP_R (dBuV)	A VG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.154	32.90	24.39	9.64	42.54	79.00	-36.46	34.03	66.00	-31.97
2	0.438	40.82	29.62	9.64	50.46	79.00	-28.54	39.26	66.00	-26.74
3	0.506	33.34	17.00	9.65	42.99	73.00	-30.01	26.65	60.00	-33.35
4	0.762	27.64	17.93	9.67	37.31	73.00	-35.69	27.60	60.00	-32.40
5	0.986	26.94	17.42	9.67	36.61	73.00	-36.39	27.09	60.00	-32.91
6	1.726	24.97	16.31	9.70	34.67	73.00	-38.33	26.01	60.00	-33.99
7	22.570	31.91	28.54	10.01	41.92	73.00	-31.08	38.55	60.00	-21.45

Note:

Margin = QP/AVG Emission - Limit

QP/AVG Emission = QP_R/AVG_R + Correct Factor

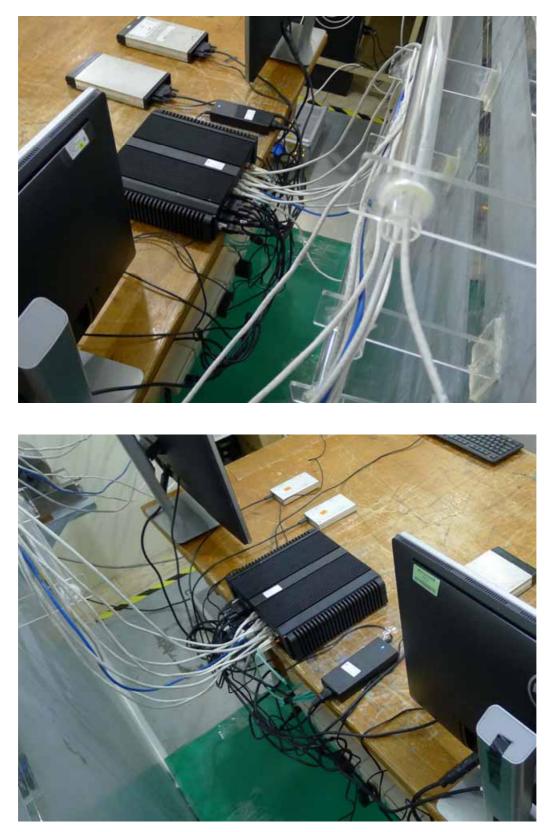
Correct Factor = LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

The frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.

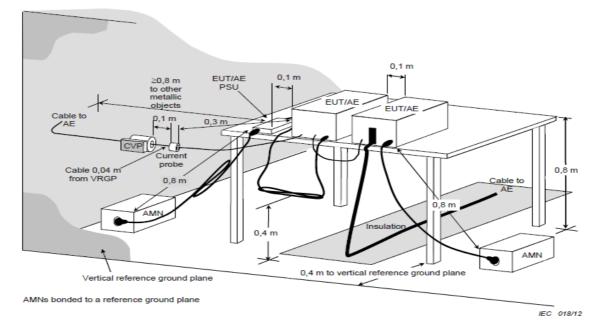

If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

-13-


2.3 Test Setup Photo

Front View

Back View


International Standards Laboratory Corp.

3. Telecommunication Port Conducted Emissions

3.1 Test Setup and Procedure

3.1.1 Test Setup

3.1.2 Test Procedure

The measurements are performed in a shielded room test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

The EUT, any support equipment, and any interconnecting cables were arranged and moved to get the maximum measurement. All of the interface cables were manipulated according to EN 55032 requirements.

The port of the EUT was connected to the support equipment through the ISN and linked in normal condition.

AC input power for the EUT & the support equipment power outlets were obtained from the same filtered source that provided input power to the LISN.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information could be useful in reducing their amplitude.

3.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	150kHz30MHz
Detector Function:	Quasi-Peak / Average Mode
Resolution Bandwidth:	9kHz

3.1.4 Limit

Asymmetric mode conducted emissions from Class_A equipment: Applicable to

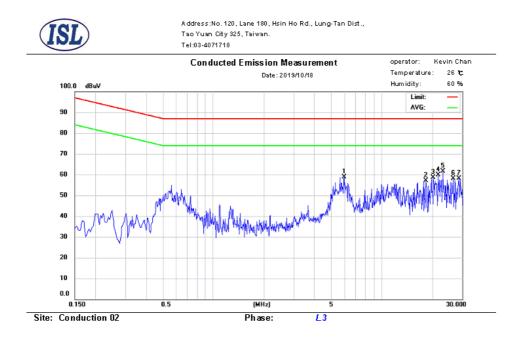
1. wired network ports.

2. optical fibre ports with metallic shield or tension members.

3. antenna ports.

	c. antenna por es.							
Frequency range MHz	Coupling device	Detector type / bandwidth	Class_A voltage limits dB(µV)	Class_A current limits dB(µA)				
0.15-0.5	AAN	Quasi Peak / 9 kHz	97-87					
0.5-30		Quasi i Cak /) KIIZ	87	n /a				
0.15-0.5	AAN	Average / 9 kHz	84-74	n/a				
0.5-30	AAN	Average / 9 KHZ	74					
0.15-0.5	CVP	Quasi Peak / 9 kHz	97-87	53-43				
0.5-30	and current probe	Quasi Peak / 9 KHZ	87	43				
0.15-0.5	CVP	Average / 9 kHz	84-74	40-30				
0.5-30	and current probe	Average / 9 KHZ	74	30				
0.15-0.5	Current Probe	Quasi Daalt / 0 kHz		53-43				
0.5-30	Current Probe	Quasi Peak / 9 kHz	n/a	43				
0.15-0.5	Current Probe	Avoraça / 0 1/Uz	11/a	40-30				
0.5-30	Current Probe	Average / 9 kHz		30				

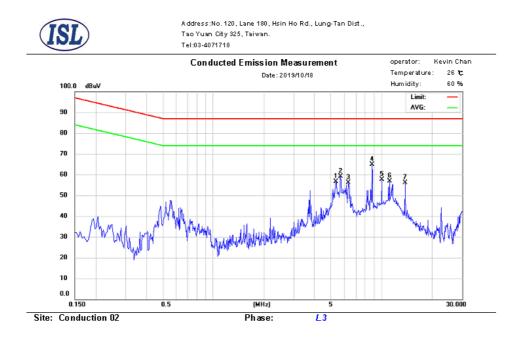
Asymmetric mode conducted emissions from Class_B equipment:


Applicable to:

- 1. wired network ports.
- 2. optical fibre ports with metallic shield or tension members.
- 3. broadcast receiver tuner ports.
- 4. antenna ports.

Frequency range MHz	Coupling device	Detector type / bandwidth	Class_B voltage limits dB(µV)	Class_B current limits dB(µA)
0.15-0.5 0.5-30	AAN	Quasi Peak / 9 kHz	84-74 74	
0.15-0.5	AAN	Average / 9 kHz	74-64	n/a
0.5-30	AAN	Average / 9 KHZ	64	
0.15-0.5	CVP	Quasi Peak / 9 kHz	84-74	40-30
0.5-30	and current probe	Quasi I Cak / 9 KIIZ	74	30
0.15-0.5	CVP	Average / 9 kHz	74-64	30-20
0.5-30	and current probe	Average / 9 KHZ	64	20
0.15-0.5	Current Probe	Over Deels / 0 bills		40-30
0.5-30	Current Probe	Quasi Peak / 9 kHz	n/a	30
0.15-0.5	Cumont Duch	Average / 0 kU-	n/a	30-20
0.5-30	Current Probe	Average / 9 kHz		20

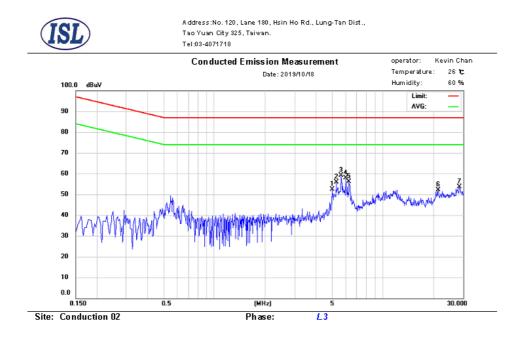
3.2 Test Data: Configuration 1\LAN1\100M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	5.958	43.63	32.03	9.61	53.24	87.00	-33.76	41.64	74.00	-32.36
2	18.242	47.04	44.92	9.83	56.87	87.00	-30.13	54.75	74.00	-19.25
3	20.258	48.15	45.56	9.87	58.02	87.00	-28.98	55.43	74.00	-18.57
4	21.662	49.27	46.61	9.91	59.18	87.00	-27.82	56.52	74.00	-17.48
5	23.130	50.70	47.66	9.96	60.66	87.00	-26.34	57.62	74.00	-16.38
6	26.486	47.54	44.69	10.06	57.60	87.00	-29.40	54.75	74.00	-19.25
7	28.686	47.29	44.14	10.15	57.44	87.00	-29.56	54.29	74.00	-19.71

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.Margin of -8dB means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Margin of -8dB means that the emission is 8dB below the limit

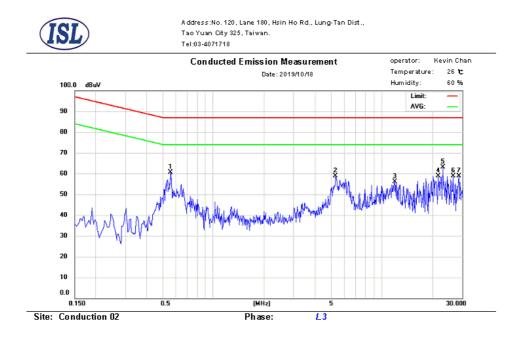
3.3 Test Data: Configuration 1\LAN1\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	5.354	41.06	31.98	9.60	50.66	87.00	-36.34	41.58	74.00	-32.42
2	5.686	43.98	33.66	9.61	53.59	87.00	-33.41	43.27	74.00	-30.73
3	6.326	39.59	29.64	9.61	49.20	87.00	-37.80	39.25	74.00	-34.75
4	8.750	47.53	35.30	9.65	57.18	87.00	-29.82	44.95	74.00	-29.05
5	9.978	37.87	26.53	9.66	47.53	87.00	-39.47	36.19	74.00	-37.81
6	11.086	41.32	31.85	9.68	51.00	87.00	-36.00	41.53	74.00	-32.47
7	13.750	38.26	25.85	9.74	48.00	87.00	-39.00	35.59	74.00	-38.41

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.Margin of -8dB means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Margin of -8dB means that the emission is 8dB below the limit

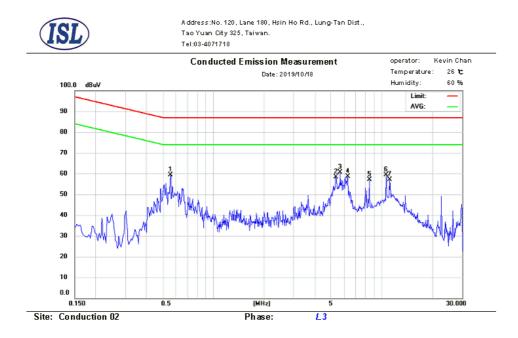
3.4 Test Data: Configuration 1\LAN1\1G


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	5.010	36.67	27.32	9.60	46.27	87.00	-40.73	36.92	74.00	-37.08
2	5.302	42.13	31.97	9.60	51.73	87.00	-35.27	41.57	74.00	-32.43
3	5.634	45.04	33.49	9.60	54.64	87.00	-32.36	43.09	74.00	-30.91
4	5.998	42.32	31.80	9.61	51.93	87.00	-35.07	41.41	74.00	-32.59
5	6.290	42.46	30.02	9.61	52.07	87.00	-34.93	39.63	74.00	-34.37
6	21.326	35.36	21.44	9.90	45.26	87.00	-41.74	31.34	74.00	-42.66
7	28.586	36.18	21.08	10.14	46.32	87.00	-40.68	31.22	74.00	-42.78

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.Margin of -8dB means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Margin of -8dB means that the emission is 8dB below the limit

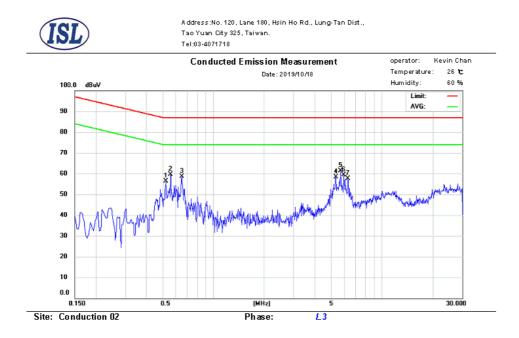
3.5 Test Data: Configuration 1\LAN2\100M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.558	46.22	37.23	9.67	55.89	87.00	-31.11	46.90	74.00	-27.10
2	5.306	45.22	35.22	9.60	54.82	87.00	-32.18	44.82	74.00	-29.18
3	11.954	44.61	41.26	9.70	54.31	87.00	-32.69	50.96	74.00	-23.04
4	21.662	50.06	47.95	9.91	59.97	87.00	-27.03	57.86	74.00	-16.14
5	23.130	52.10	49.83	9.96	62.06	87.00	-24.94	59.79	74.00	-14.21
6	26.486	48.14	45.79	10.06	58.20	87.00	-28.80	55.85	74.00	-18.15
7	28.686	48.01	45.43	10.15	58.16	87.00	-28.84	55.58	74.00	-18.42

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

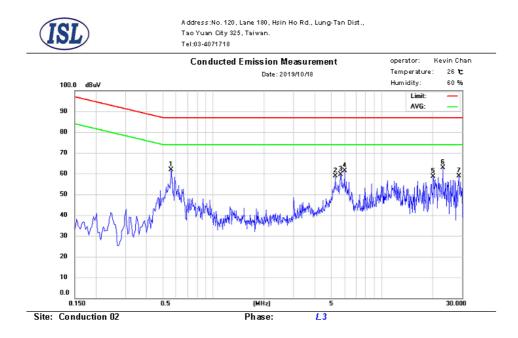
3.6 Test Data: Configuration 1\LAN2\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.558	45.58	37.00	9.67	55.25	87.00	-31.75	46.67	74.00	-27.33
2	5.358	43.73	34.62	9.60	53.33	87.00	-33.67	44.22	74.00	-29.78
3	5.678	46.48	35.69	9.61	56.09	87.00	-30.91	45.30	74.00	-28.70
4	6.310	42.06	32.11	9.61	51.67	87.00	-35.33	41.72	74.00	-32.28
5	8.422	40.03	30.73	9.64	49.67	87.00	-37.33	40.37	74.00	-33.63
6	10.598	42.77	32.82	9.68	52.45	87.00	-34.55	42.50	74.00	-31.50
7	11.086	40.71	31.95	9.68	50.39	87.00	-36.61	41.63	74.00	-32.37

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

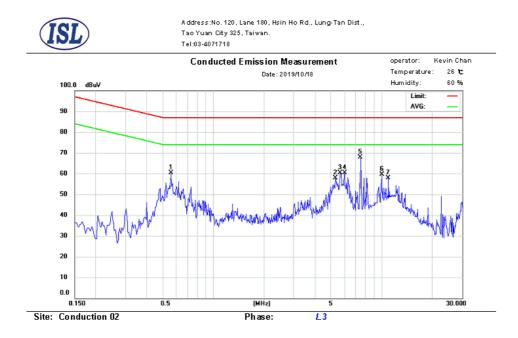
3.7 Test Data: Configuration 1\LAN2\1G


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.522	45.15	43.20	9.68	54.83	87.00	-32.17	52.88	74.00	-21.12
2	0.558	45.76	35.57	9.67	55.43	87.00	-31.57	45.24	74.00	-28.76
3	0.654	41.60	37.29	9.65	51.25	87.00	-35.75	46.94	74.00	-27.06
4	5.358	42.90	34.97	9.60	52.50	87.00	-34.50	44.57	74.00	-29.43
5	5.686	45.95	35.89	9.61	55.56	87.00	-31.44	45.50	74.00	-28.50
6	5.958	46.06	34.07	9.61	55.67	87.00	-31.33	43.68	74.00	-30.32
7	6.310	40.15	30.69	9.61	49.76	87.00	-37.24	40.30	74.00	-33.70

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.Margin of -8dB means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Margin of -8dB means that the emission is 8dB below the limit

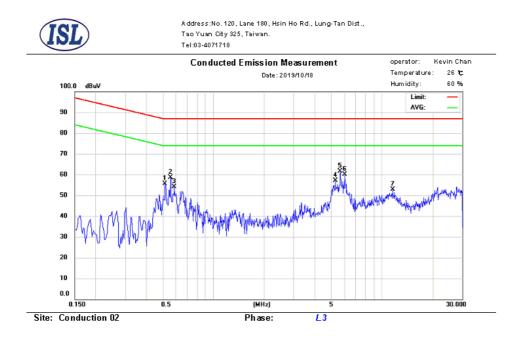
3.8 Test Data: Configuration 1\LAN3\100M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.562	48.35	37.95	9.67	58.02	87.00	-28.98	47.62	74.00	-26.38
2	5.302	45.94	36.09	9.60	55.54	87.00	-31.46	45.69	74.00	-28.31
3	5.698	46.21	36.01	9.61	55.82	87.00	-31.18	45.62	74.00	-28.38
4	6.002	45.76	34.45	9.61	55.37	87.00	-31.63	44.06	74.00	-29.94
5	20.258	48.66	46.86	9.87	58.53	87.00	-28.47	56.73	74.00	-17.27
6	23.130	52.10	49.81	9.96	62.06	87.00	-24.94	59.77	74.00	-14.23
7	28.686	48.02	45.42	10.15	58.17	87.00	-28.83	55.57	74.00	-18.43

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

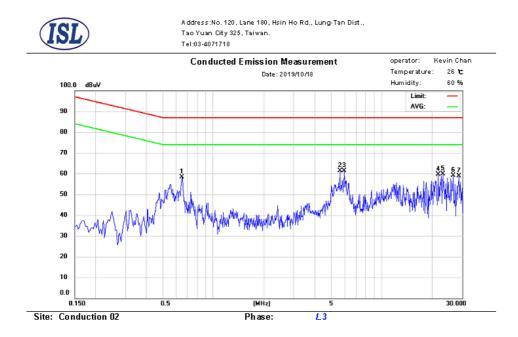
3.9 Test Data: Configuration 1\LAN3\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.562	49.06	38.51	9.67	58.73	87.00	-28.27	48.18	74.00	-25.82
2	5.298	45.22	34.54	9.60	54.82	87.00	-32.18	44.14	74.00	-29.86
3	5.674	44.92	35.28	9.61	54.53	87.00	-32.47	44.89	74.00	-29.11
4	6.006	44.43	33.70	9.61	54.04	87.00	-32.96	43.31	74.00	-30.69
5	7.498	50.01	37.75	9.63	59.64	87.00	-27.36	47.38	74.00	-26.62
6	9.994	40.15	28.53	9.66	49.81	87.00	-37.19	38.19	74.00	-35.81
7	10.926	41.03	32.01	9.68	50.71	87.00	-36.29	41.69	74.00	-32.31

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.Margin of -8dB means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Margin of -8dB means that the emission is 8dB below the limit

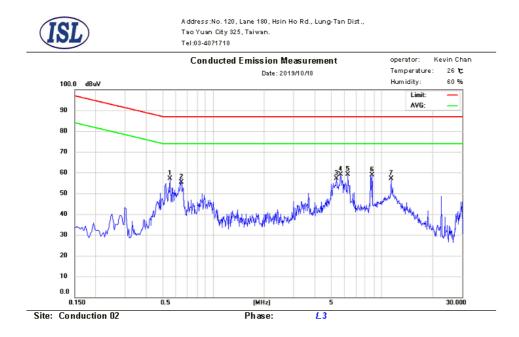
3.10 Test Data: Configuration 1\LAN3\1G


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.518	43.10	41.03	9.68	52.78	87.00	-34.22	50.71	74.00	-23.29
2	0.558	45.97	35.41	9.67	55.64	87.00	-31.36	45.08	74.00	-28.92
3	0.586	41.84	36.13	9.66	51.50	87.00	-35.50	45.79	74.00	-28.21
4	5.298	44.95	34.56	9.60	54.55	87.00	-32.45	44.16	74.00	-29.84
5	5.666	45.53	35.51	9.60	55.13	87.00	-31.87	45.11	74.00	-28.89
6	6.062	41.00	33.03	9.61	50.61	87.00	-36.39	42.64	74.00	-31.36
7	11.602	37.22	29.89	9.70	46.92	87.00	-40.08	39.59	74.00	-34.41

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

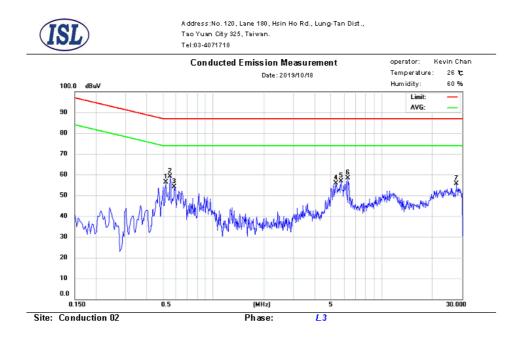
3.11 Test Data: Configuration 1\LAN4\100M


No.	Frequency (MHz)	QP_R (dBuV)	A VG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.654	41.55	34.78	9.65	51.20	87.00	-35.80	44.43	74.00	-29.57
2	5.638	48.23	36.00	9.60	57.83	87.00	-29.17	45.60	74.00	-28.40
3	5.966	47.95	35.21	9.61	57.56	87.00	-29.44	44.82	74.00	-29.18
4	21.662	50.06	47.95	9.91	59.97	87.00	-27.03	57.86	74.00	-16.14
5	23.130	52.10	49.82	9.96	62.06	87.00	-24.94	59.78	74.00	-14.22
6	26.610	48.22	45.89	10.08	58.30	87.00	-28.70	55.97	74.00	-18.03
7	28.686	48.02	45.48	10.15	58.17	87.00	-28.83	55.63	74.00	-18.37

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

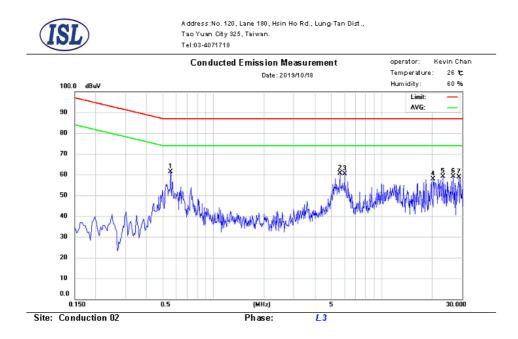
3.12 Test Data: Configuration 1\LAN4\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.554	44.01	36.21	9.67	53.68	87.00	-33.32	45.88	74.00	-28.12
2	0.646	40.70	31.99	9.65	50.35	87.00	-36.65	41.64	74.00	-32.36
3	5.374	41.65	34.23	9.60	51.25	87.00	-35.75	43.83	74.00	-30.17
4	5.706	43.79	35.37	9.61	53.40	87.00	-33.60	44.98	74.00	-29.02
5	6.294	44.21	32.10	9.61	53.82	87.00	-33.18	41.71	74.00	-32.29
6	8.750	47.47	35.40	9.65	57.12	87.00	-29.88	45.05	74.00	-28.95
7	11.358	40.39	32.09	9.69	50.08	87.00	-36.92	41.78	74.00	-32.22

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

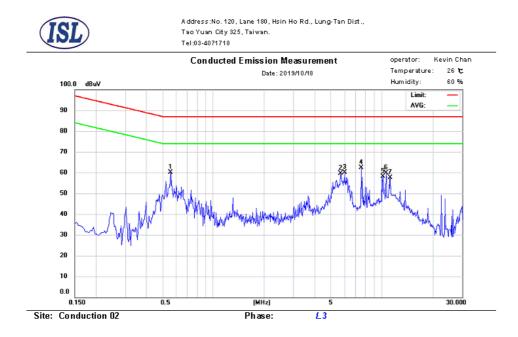
3.13 Test Data: Configuration 1\LAN4\1G


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.522	46.88	42.95	9.68	56.56	87.00	-30.44	52.63	74.00	-21.37
2	0.554	47.91	38.15	9.67	57.58	87.00	-29.42	47.82	74.00	-26.18
3	0.586	41.57	34.26	9.66	51.23	87.00	-35.77	43.92	74.00	-30.08
4	5.338	43.63	34.88	9.60	53.23	87.00	-33.77	44.48	74.00	-29.52
5	5.714	43.02	35.54	9.61	52.63	87.00	-34.37	45.15	74.00	-28.85
6	6.298	44.24	31.68	9.61	53.85	87.00	-33.15	41.29	74.00	-32.71
7	27.602	36.50	20.56	10.11	46.61	87.00	-40.39	30.67	74.00	-43.33

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

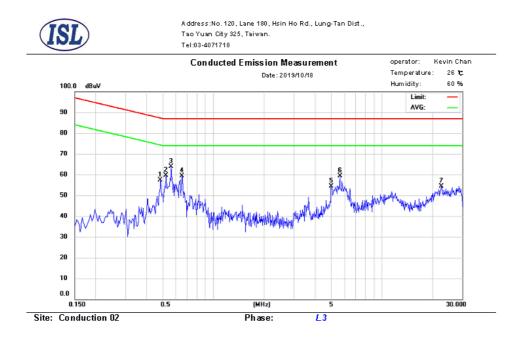
3.14 Test Data: Configuration 1\LAN5\100M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.558	47.86	37.93	9.67	57.53	87.00	-29.47	47.60	74.00	-26.40
2	5.638	47.83	35.94	9.60	57.43	87.00	-29.57	45.54	74.00	-28.46
3	6.018	46.56	34.24	9.61	56.17	87.00	-30.83	43.85	74.00	-30.15
4	20.258	48.69	46.91	9.87	58.56	87.00	-28.44	56.78	74.00	-17.22
5	23.066	48.47	46.21	9.96	58.43	87.00	-28.57	56.17	74.00	-17.83
6	26.486	48.15	45.85	10.06	58.21	87.00	-28.79	55.91	74.00	-18.09
7	28.686	48.00	45.45	10.15	58.15	87.00	-28.85	55.60	74.00	-18.40

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

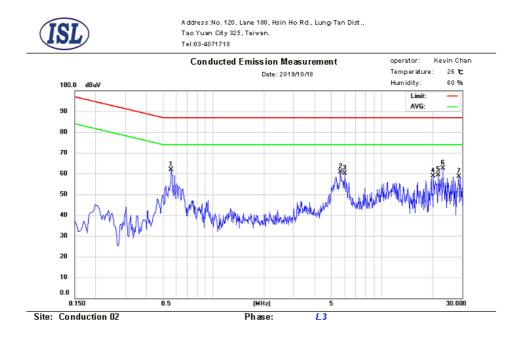
3.15 Test Data: Configuration 1\LAN5\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.558	45.62	36.95	9.67	55.29	87.00	-31.71	46.62	74.00	-27.38
2	5.702	45.38	34.93	9.61	54.99	87.00	-32.01	44.54	74.00	-29.46
3	6.010	44.92	33.56	9.61	54.53	87.00	-32.47	43.17	74.00	-30.83
4	7.554	44.40	32.93	9.63	54.03	87.00	-32.97	42.56	74.00	-31.44
5	10.162	41.39	31.51	9.66	51.05	87.00	-35.95	41.17	74.00	-32.83
6	10.598	42.88	32.80	9.68	52.56	87.00	-34.44	42.48	74.00	-31.52
7	11.250	46.40	35.62	9.68	56.08	87.00	-30.92	45.30	74.00	-28.70

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

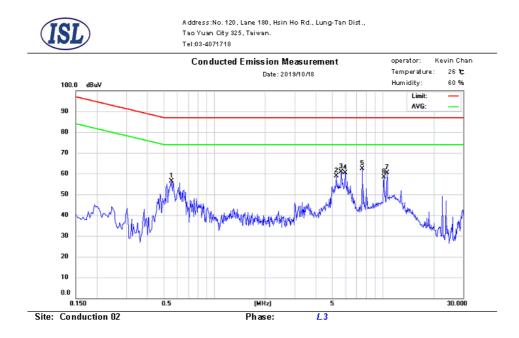
3.16 Test Data: Configuration 1\LAN5\1G


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.486	42.10	31.99	9.69	51.79	87.24	-35.45	41.68	74.24	-32.56
2	0.522	48.68	43.46	9.68	58.36	87.00	-28.64	53.14	74.00	-20.86
3	0.562	47.50	36.28	9.67	57.17	87.00	-29.83	45.95	74.00	-28.05
4	0.654	41.79	36.58	9.65	51.44	87.00	-35.56	46.23	74.00	-27.77
5	5.014	40.02	29.83	9.60	49.62	87.00	-37.38	39.43	74.00	-34.57
6	5.642	46.54	35.56	9.60	56.14	87.00	-30.86	45.16	74.00	-28.84
7	22.570	40.83	35.58	9.94	50.77	87.00	-36.23	45.52	74.00	-28.48

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

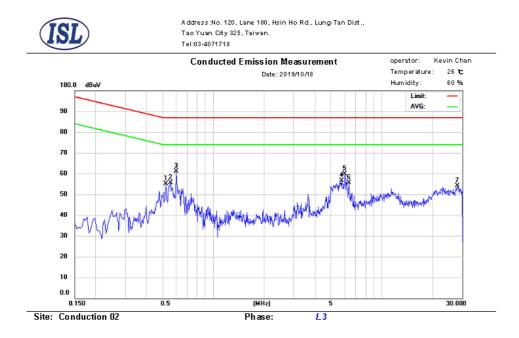
3.17 Test Data: Configuration 1\LAN6\100M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.562	49.12	38.63	9.67	58.79	87.00	-28.21	48.30	74.00	-25.70
2	5.686	47.02	36.03	9.61	56.63	87.00	-30.37	45.64	74.00	-28.36
3	6.006	46.70	34.18	9.61	56.31	87.00	-30.69	43.79	74.00	-30.21
4	20.258	48.11	46.24	9.87	57.98	87.00	-29.02	56.11	74.00	-17.89
5	21.662	49.23	47.24	9.91	59.14	87.00	-27.86	57.15	74.00	-16.85
6	23.130	51.64	49.22	9.96	61.60	87.00	-25.40	59.18	74.00	-14.82
7	28.686	47.66	45.03	10.15	57.81	87.00	-29.19	55.18	74.00	-18.82

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

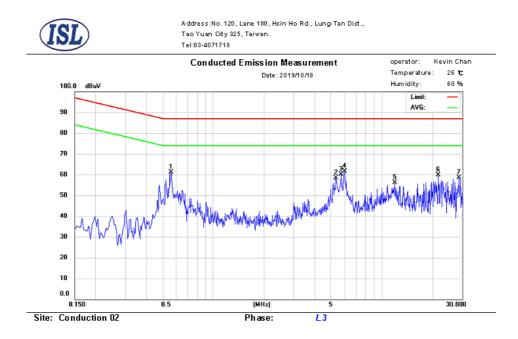
3.18 Test Data: Configuration 1\LAN6\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.558	46.64	37.32	9.67	56.31	87.00	-30.69	46.99	74.00	-27.01
2	5.298	46.63	35.67	9.60	56.23	87.00	-30.77	45.27	74.00	-28.73
3	5.634	48.11	36.42	9.60	57.71	87.00	-29.29	46.02	74.00	-27.98
4	5.974	46.27	34.09	9.61	55.88	87.00	-31.12	43.70	74.00	-30.30
5	7.554	44.35	33.01	9.63	53.98	87.00	-33.02	42.64	74.00	-31.36
6	10.162	41.10	31.52	9.66	50.76	87.00	-36.24	41.18	74.00	-32.82
7	10.598	42.69	32.76	9.68	52.37	87.00	-34.63	42.44	74.00	-31.56

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

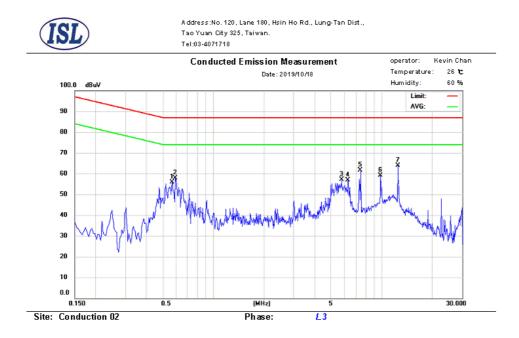
3.19 Test Data: Configuration 1\LAN6\1G


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.522	45.03	41.37	9.68	54.71	87.00	-32.29	51.05	74.00	-22.95
2	0.558	46.44	37.72	9.67	56.11	87.00	-30.89	47.39	74.00	-26.61
3	0.602	42.08	34.63	9.66	51.74	87.00	-35.26	44.29	74.00	-29.71
4	5.778	41.50	34.35	9.61	51.11	87.00	-35.89	43.96	74.00	-30.04
5	6.026	44.54	33.91	9.61	54.15	87.00	-32.85	43.52	74.00	-30.48
6	6.366	40.45	30.39	9.62	50.07	87.00	-36.93	40.01	74.00	-33.99
7	28.078	37.07	20.71	10.12	47.19	87.00	-39.81	30.83	74.00	-43.17

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.Margin of -8dB means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Margin of -8dB means that the emission is 8dB below the limit

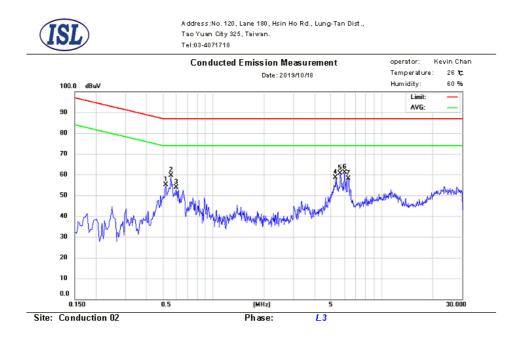
3.20 Test Data: Configuration 1\LAN7\100M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.562	49.20	39.09	9.67	58.87	87.00	-28.13	48.76	74.00	-25.24
2	5.346	45.44	34.95	9.60	55.04	87.00	-31.96	44.55	74.00	-29.45
3	5.714	44.06	35.57	9.61	53.67	87.00	-33.33	45.18	74.00	-28.82
4	6.010	46.53	34.33	9.61	56.14	87.00	-30.86	43.94	74.00	-30.06
5	11.954	44.38	41.05	9.70	54.08	87.00	-32.92	50.75	74.00	-23.25
6	21.662	49.49	47.21	9.91	59.40	87.00	-27.60	57.12	74.00	-16.88
7	28.686	47.62	44.92	10.15	57.77	87.00	-29.23	55.07	74.00	-18.93

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

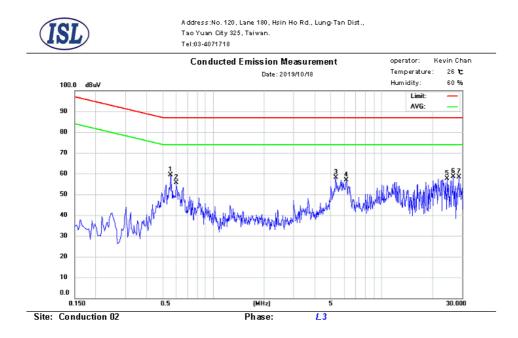
3.21 Test Data: Configuration 1\LAN7\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.570	43.61	34.75	9.67	53.28	87.00	-33.72	44.42	74.00	-29.58
2	0.594	42.70	33.78	9.66	52.36	87.00	-34.64	43.44	74.00	-30.56
3	5.746	41.70	33.85	9.61	51.31	87.00	-35.69	43.46	74.00	-30.54
4	6.306	45.14	34.39	9.61	54.75	87.00	-32.25	44.00	74.00	-30.00
5	7.502	49.91	37.67	9.63	59.54	87.00	-27.46	47.30	74.00	-26.70
6	9.838	41.02	31.26	9.66	50.68	87.00	-36.32	40.92	74.00	-33.08
7	12.502	45.50	34.52	9.72	55.22	87.00	-31.78	44.24	74.00	-29.76

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

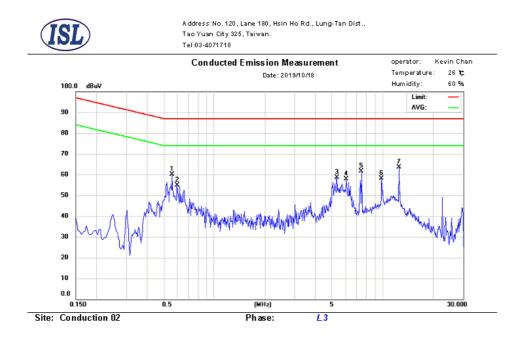
3.22 Test Data: Configuration 1\LAN7\1G


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.522	44.87	41.19	9.68	54.55	87.00	-32.45	50.87	74.00	-23.13
2	0.562	48.89	38.10	9.67	58.56	87.00	-28.44	47.77	74.00	-26.23
3	0.602	42.49	34.72	9.66	52.15	87.00	-34.85	44.38	74.00	-29.62
4	5.306	45.13	35.52	9.60	54.73	87.00	-32.27	45.12	74.00	-28.88
5	5.682	46.97	36.09	9.61	56.58	87.00	-30.42	45.70	74.00	-28.30
6	6.010	45.78	34.21	9.61	55.39	87.00	-31.61	43.82	74.00	-30.18
7	6.326	41.26	31.15	9.61	50.87	87.00	-36.13	40.76	74.00	-33.24

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.Margin of -8dB means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Margin of -8dB means that the emission is 8dB below the limit

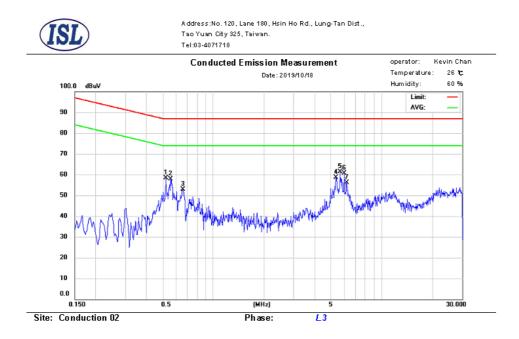
3.23 Test Data: Configuration 1\LAN8\100M


No.	Frequency (MHz)	QP_R (dBuV)	A VG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.558	46.01	37.31	9.67	55.68	87.00	-31.32	46.98	74.00	-27.02
2	0.602	43.36	34.86	9.66	53.02	87.00	-33.98	44.52	74.00	-29.48
3	5.342	45.20	35.10	9.60	54.80	87.00	-32.20	44.70	74.00	-29.30
4	6.126	44.59	34.16	9.61	54.20	87.00	-32.80	43.77	74.00	-30.23
5	24.350	47.38	45.03	10.00	57.38	87.00	-29.62	55.03	74.00	-18.97
6	26.486	47.79	45.43	10.06	57.85	87.00	-29.15	55.49	74.00	-18.51
7	28.686	47.66	45.02	10.15	57.81	87.00	-29.19	55.17	74.00	-18.83

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

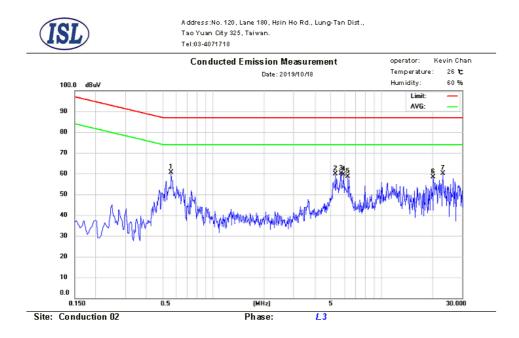
3.24 Test Data: Configuration 1\LAN8\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.562	48.91	38.44	9.67	58.58	87.00	-28.42	48.11	74.00	-25.89
2	0.602	42.10	34.55	9.66	51.76	87.00	-35.24	44.21	74.00	-29.79
3	5.338	44.85	34.99	9.60	54.45	87.00	-32.55	44.59	74.00	-29.41
4	6.062	41.10	33.35	9.61	50.71	87.00	-36.29	42.96	74.00	-31.04
5	7.502	50.10	37.67	9.63	59.73	87.00	-27.27	47.30	74.00	-26.70
6	9.838	41.02	31.23	9.66	50.68	87.00	-36.32	40.89	74.00	-33.11
7	12.502	45.64	34.50	9.72	55.36	87.00	-31.64	44.22	74.00	-29.78

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.Margin of -8dB means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Margin of -8dB means that the emission is 8dB below the limit

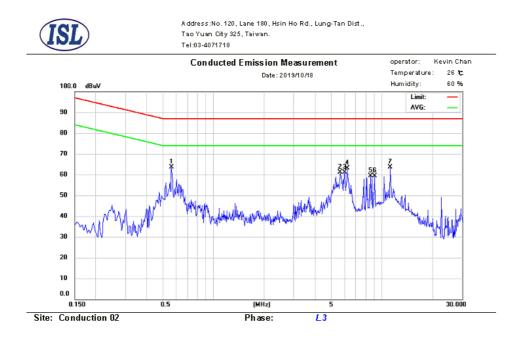
3.25 Test Data: Configuration 1\LAN8\1G


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.522	45.23	41.28	9.68	54.91	87.00	-32.09	50.96	74.00	-23.04
2	0.558	46.98	37.99	9.67	56.65	87.00	-30.35	47.66	74.00	-26.34
3	0.658	41.81	37.23	9.65	51.46	87.00	-35.54	46.88	74.00	-27.12
4	5.350	45.27	35.01	9.60	54.87	87.00	-32.13	44.61	74.00	-29.39
5	5.662	45.58	35.91	9.60	55.18	87.00	-31.82	45.51	74.00	-28.49
6	5.966	47.97	35.16	9.61	57.58	87.00	-29.42	44.77	74.00	-29.23
7	6.190	41.32	31.65	9.61	50.93	87.00	-36.07	41.26	74.00	-32.74

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.Margin of -8dB means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Margin of -8dB means that the emission is 8dB below the limit

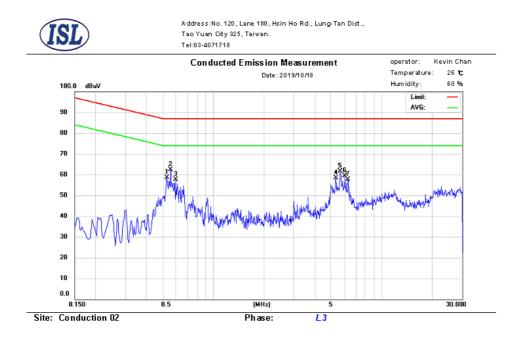
3.26 Test Data: Configuration 1\LAN9\100M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.562	48.58	38.02	9.67	58.25	87.00	-28.75	47.69	74.00	-26.31
2	5.298	46.05	37.24	9.60	55.65	87.00	-31.35	46.84	74.00	-27.16
3	5.718	43.46	35.02	9.61	53.07	87.00	-33.93	44.63	74.00	-29.37
4	5.958	48.44	35.16	9.61	58.05	87.00	-28.95	44.77	74.00	-29.23
5	6.294	45.43	32.81	9.61	55.04	87.00	-31.96	42.42	74.00	-31.58
6	20.258	48.11	46.24	9.87	57.98	87.00	-29.02	56.11	74.00	-17.89
7	23.130	51.64	49.21	9.96	61.60	87.00	-25.40	59.17	74.00	-14.83

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

3.27 Test Data: Configuration 1\LAN9\10M


No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.566	47.93	36.94	9.67	57.60	87.00	-29.40	46.61	74.00	-27.39
2	5.638	48.49	36.10	9.60	58.09	87.00	-28.91	45.70	74.00	-28.30
3	6.006	46.15	34.35	9.61	55.76	87.00	-31.24	43.96	74.00	-30.04
4	6.250	45.21	35.59	9.61	54.82	87.00	-32.18	45.20	74.00	-28.80
5	8.586	41.18	30.64	9.65	50.83	87.00	-36.17	40.29	74.00	-33.71
6	9.074	41.01	30.86	9.65	50.66	87.00	-36.34	40.51	74.00	-33.49
7	11.250	46.28	35.68	9.68	55.96	87.00	-31.04	45.36	74.00	-28.64

Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.If peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.

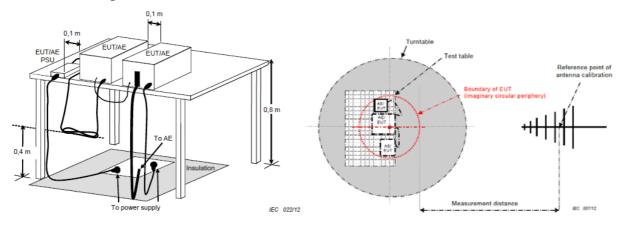
3.28 Test Data: Configuration 1\LAN9\1G

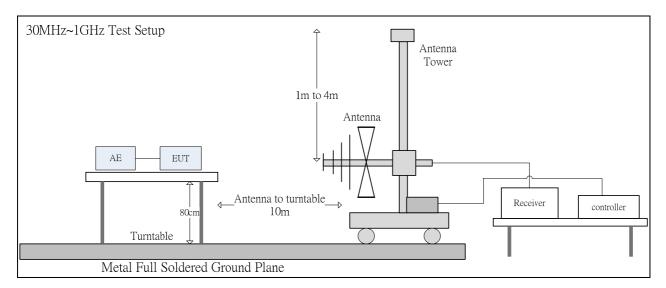
No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.530	39.08	31.16	9.67	48.75	87.00	-38.25	40.83	74.00	-33.17
2	0.558	46.29	37.69	9.67	55.96	87.00	-31.04	47.36	74.00	-26.64
3	0.598	42.37	33.43	9.66	52.03	87.00	-34.97	43.09	74.00	-30.91
4	5.342	44.67	35.08	9.60	54.27	87.00	-32.73	44.68	74.00	-29.32
5	5.638	48.68	36.19	9.60	58.28	87.00	-28.72	45.79	74.00	-28.21
6	6.022	45.76	34.31	9.61	55.37	87.00	-31.63	43.92	74.00	-30.08
7	6.290	45.19	31.96	9.61	54.80	87.00	-32.20	41.57	74.00	-32.43

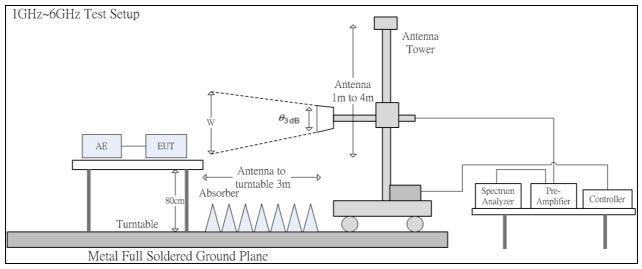
Note :

Margin = QP/AVG Emission – LimitQP/AVG Emission = QP_R/AVG_R + Correct FactorCorrect Factor = LISN Loss + Cable LossA margin of -8dB means that the emission is 8dB below the limitThe frequency spectrum graph is for final peak graph, and the attached table is for QP/AVG test result.Margin of -8dB means that the emission is 8dB below the limitIf peak data can pass, it will be shown in "QP/AVG Correct" column, if not, QP/AVG data will instead.Margin of -8dB means that the emission is 8dB below the limit

3.29 Test Setup Photo


Refer to the Setup Photos for Power Main Port Conducted Emissions




4. Radiated Disturbance Emissions

4.1 Test Setup and Procedure

4.1.1 Test Setup

Fraguaray (CHz)	E-plane	U plana	θ_{2} dB (main)	d= 3 m
Frequency (GHz)	E-plane	H-plane	$\theta_{3 dB}$ (min)	w (m)
1	88°	147°	88°	5.79
2	68°	119°	68°	4.04
3	73°	92°	73°	4.44
4	70°	89°	70°	4.20
5	55°	60°	55°	3.12
6	63°	62°	62°	3.60

The 3dB beam width of the horn antenna used for the test is as shown in the table below.

4.1.2 Test Procedure

The radiated emissions test will then be repeated on the open site or chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 10 meter open field sites or 10 meter chamber. Desktop EUT are set up on a FRP stand 0.8 meter above the ground or floor-standing arrangement shall be placed on the horizontal ground reference plane.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The highest emissions between 1 GHz to 6 GHz were analyzed in details by operating the spectrum analyzer in peak and average mode to determine the precise amplitude of the emissions. The test volume for a height of up to 30 cm may be obstructed by absorber placed on the ground plane.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings. All of the interface cables were manipulated according to EN 55032 requirements.

The highest internal source of an EUT is defined as the highest frequency generated or used within the EUT or on which the EUT operates or tunes.

If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.

If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.

If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

4.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120kHz
Frequency Range:	Above 1 GHz to 6 GHz
Detector Function:	Peak/Average Mode
Resolution Bandwidth:	1MHz

4.2 Limit

Radiated emissions at frequencies up to 1 GHz for Class_A equipment:

Fraguanay ranga	Measu	rement	Class_A limits dB(µV/m)	
Frequency range MHz	Distance m	Detector type / bandwidth	OATS/SAC	
30-230	10		40	
230-1000	10	Quasi Peak /	47	
30-230	2	120 kHz	50	
230-1000	3		57	

Radiated emissions at frequencies above 1 GHz for Class_A equipment:

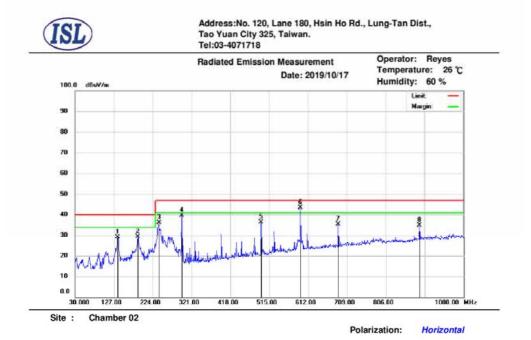
Eraguanay ranga	Measu	rement	Class_A limits dB(µV/m)
Frequency range MHz	Distance m	Detector type / bandwidth	FSOATS
1000-3000		Average /	56
3000-6000	2	1MHz	60
1000-3000	3	Peak /	76
3000-6000		1MHz	80

Radiated emissions at frequencies up to 1 GHz for Class_B equipment:

Fraguanay ranga	Measu	rement	Class_B limits dB(µV/m)	
Frequency range MHz	Distance m	Detector type / bandwidth	OATS/SAC	
30-230	10		30	
230-1000	10	Quasi Peak /	37	
30-230	2	120 kHz	40	
230-1000	3		47	

Encoulon at non co	Measu	rement	Class_B limits $dB(\mu V/m)$							
Frequency range MHz	Distance	Detector type /	FSOATS							
	m	bandwidth	1.0.0111.0							
1000-3000		Average /	50							
3000-6000	2	1MHz	54							
1000-3000	3	Peak /	70							
3000-6000		1MHz	74							

Radiated emissions at frequencies above 1 GHz for Class B equipment:


Radiated emissions from FM receivers:

Б	Measurement		Class_B limits $dB(\mu V/m)$		
Frequency range MHz	Llistonoo Llotootor tuno /		Fundamental	Harmonics	
IVITIZ			OATS/SAC	OATS/SAC	
30-230				42	
230-300	10		50	42	
300-1000		Quasi Peak /		46	
30-230		120 kHz		52	
230-300	3		60	52	
300-1000				56	

4.3 Radiation Test Data: Configuration 1

- Radiated Emissions (Horizontal)

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	136.70	46.00	-16.86	29.14	40.00	-10.86	400	120	peak
2	187.14	47.23	-17.74	29.49	40.00	-10.51	400	256	peak
3	239.52	52.81	-16.58	36.23	47.00	-10.77	400	250	peak
4	296.75	53.77	-14.20	39.57	47.00	-7.43	300	297	peak
5	494.63	45.27	-8.82	36.45	47.00	-10.55	200	310	peak
6	593.57	50.13	-6.68	43.45	47.00	-3.55	300	52	peak
7	687.66	40.45	-5.18	35.27	47.00	-11.73	200	61	peak
8	890.39	37.05	-2.08	34.97	47.00	-12.03	400	48	peak

* Note:

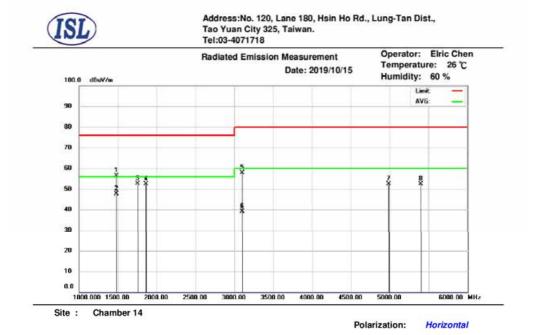
Margin = Emission – Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Antenna Distance: 10 meters


Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

International Standards Laboratory Corp.

Report Number: ISL-19LE676CE35

-50-

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	1480.00	72.60	-16.20	56.40	76.00	-19.60	250	184	peak
2	1483.34	63.88	-16.22	47.66	56.00	-8.34	206	162	AVG
3	1755.00	67.26	-14.51	52.75	76.00	-23.25	350	8	peak
4	1860.00	65.35	-13.03	52.32	76.00	-23.68	100	241	peak
5	3100.00	68.50	-10.64	57.86	80.00	-22.14	100	250	peak
6	3103.17	49.66	-10.65	39.01	60.00	-20.99	101	253	AVG
7	4990.00	62.39	-9.91	52.48	80.00	-27.52	150	46	peak
8	5405.00	61.46	-9.05	52.41	80.00	-27.59	100	218	peak

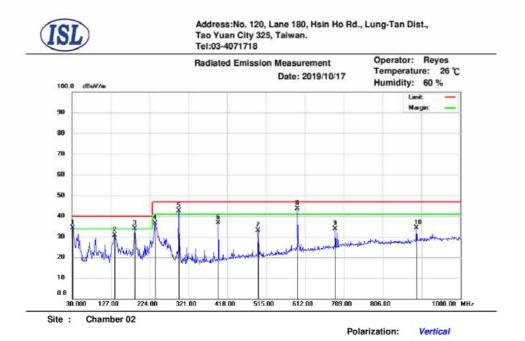
* Note: Margin = Emission – Limit

Emission = Radiated Amplitude + Correct Factor

Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

Antenna Distance: 3 meters

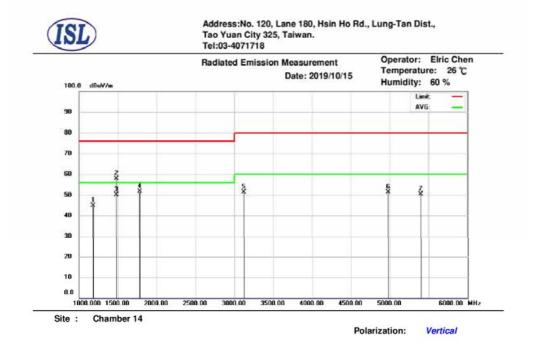

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

-51-

International Standards Laboratory Corp.

-Radiated Emissions (Vertical)

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	31.94	53.21	-18.88	34.33	40.00	-5.67	100	343	peak
2	136.70	47.72	-16.86	30.86	40.00	-9.14	300	101	peak
3	187.14	51.92	-17.74	34.18	40.00	-5.82	108	360	peak
4	237.58	53.39	-16.78	36.61	47.00	-10.39	100	96	peak
5	296.75	56.76	-14.20	42.56	47.00	-4.44	100	194	peak
6	395.69	48.03	-11.23	36.80	47.00	-10.20	200	37	peak
7	494.63	41.96	-8.82	33.14	47.00	-13.86	100	327	peak
8	593.57	50.40	-6.68	43.72	47.00	-3.28	200	193	peak
9	687.66	38.97	-5.18	33.79	47.00	-13.21	397	360	peak
10	890.39	36.34	-2.08	34.26	47.00	-12.74	300	349	peak


* Note: Margin = Emission – Limit Emission = Radiated Amplitude + Correct Factor Correct Factor = Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

Antenna Distance: 10 meters

Below 1GHz test, if the peak measured value meets the QP limit, it is unnecessary to perform the QP measurement.

International Standards Laboratory Corp.

Mk.	Frequency (MHz)	RX_R (dBuV)	Correct Factor(dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Ant.Pos (cm)	Tab.Pos (deg.)	Detector
1	1185.00	60.55	-15.78	44.77	76.00	-31.23	100	193	peak
2	1480.00	74.11	-16.20	57.91	76.00	-18.09	150	202	peak
3	1483.60	66.25	-16.22	50.03	56.00	-5.97	148	205	AVG
4	1780.00	65.71	-14.15	51.56	76.00	-24.44	100	131	peak
5	3125.00	62.05	-10.68	51.37	80.00	-28.63	100	193	peak
6	4985.00	61.17	-9.90	51.27	80.00	-28.73	150	194	peak
7	5405.00	59.51	-9.05	50.46	80.00	-29.54	200	138	peak

* Note: Margin = Emission – Limit Emission = Radiated Amplitude + Correct Factor

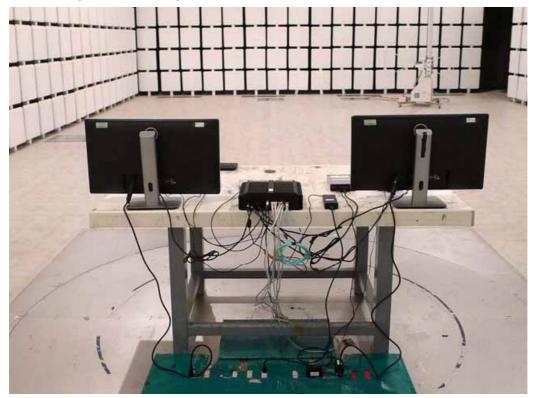
Correct Factor = Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain

A margin of -8dB means that the emission is 8dB below the limit

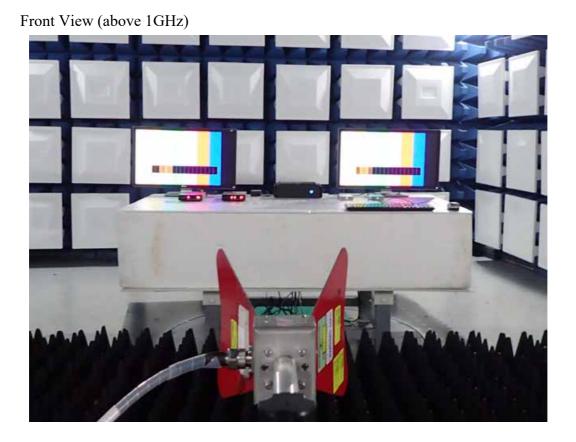
Antenna Distance: 3 meters

Above 1GHz test, if the peak measured value meets the average limit, it is unnecessary to perform the average measurement.

-53-


International Standards Laboratory Corp.

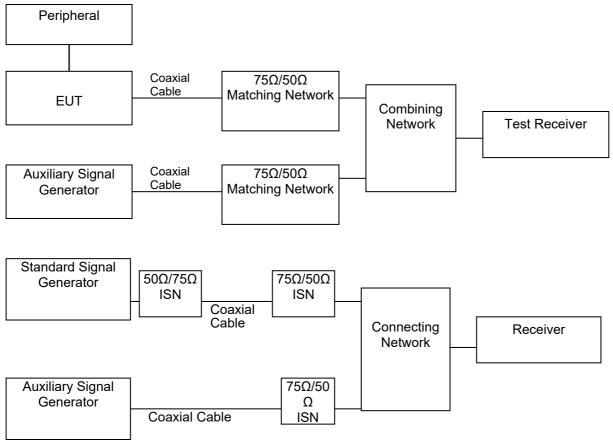
4.4 Test Setup Photo


Front View (30MHz~1GHz)

Back View (30MHz~1GHz)

International Standards Laboratory Corp.

Back View (above 1GHz)


International Standards Laboratory Corp.

5. Voltage Disturbance Emissions at Antenna Terminals

5.1 Test Setup and Procedure

5.1.1 Test Setup

5.1.2 Test Procedure

The output level of the auxiliary signal generator was set to 70dBuV at the EUT antenna terminal with 75 ohms impedance with an un-modulated carrier.

The highest emissions were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The power of EUT was switched off to make sure the emission was not contributed by the auxiliary signal generator. While doing so, the interconnecting cables and major parts of the system were moved around to maximize the emission.

5.1.3 EMI Receiver Configuration (for the frequencies tested)

5.1.4 Limit

Applicable to:

- 1. TV broadcast receiver tuner ports with an accessible connector.
- 2. RF modulator output ports.

3. FM broadcast receiver tuner ports with an accessible connector.

Table clause	Frequency range	Detector type/ bandwidth		Class B lim dB(μV) 75 s	Applicability	
	MHz		Other	Local Oscillator Fundamental	Local Oscillator Harmonics	
A12.1	30 – 950		46	46	46	See a)
	950 – 2 150	For frequencies ≤1 GHz	46	54	54	
A12.2	950 – 2 150	Quasi Peak/	46	54	54	See b)
A12.3	30 – 300	120 kHz	46	54	50	See c)
	300 – 1 000				52	
A12.4	30 – 300	For frequencies	46	66	59	See d)
	300 – 1 000	≥1 GHz			52	
A12.5	30 – 950	Peak/ 1 MHz	46	76	46	See e)
	950 – 2 150			n/a	54	

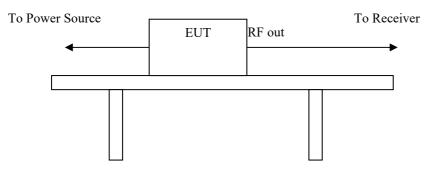
a) Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

b) Tuner units (not the LNB) for satellite signal reception.

c) Frequency modulation audio receivers and PC tuner cards.

d) Frequency modulation car radios.

e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.


******Remarks: It is not necessary to be tested on this item.

6. Differential Voltage Emissions

6.1 Test Setup and Procedure

6.1.1 Test Setup

6.1.2 Test Procedure

The output level of the auxiliary signal generator was set to 70dBuV at the EUT antenna terminal with 75 ohms impedance with an un-modulated carrier.

The highest emissions were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. The power of EUT was switched off to make sure the emission was not contributed by the auxiliary signal generator. While doing so, the interconnecting cables and major parts of the system were moved around to maximize the emission.

6.1.3 EMI Receiver Configuration (for the frequencies tested)

Frequency Range:	30MHz-2150MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120kHz

6.1.4 Limit

Applicable to:

- 1. TV broadcast receiver tuner ports with an accessible connector.
- 2. RF modulator output ports.
- 3. FM broadcast receiver tuner ports with an accessible connector.

Table clause	Frequency range MHz	Detector type/ bandwidth	Class B limits dB(μV) 75 Ω			Applicability
			Other	Local Oscillator Fundamental	Local Oscillator Harmonics	
A12.1	30 – 950		46	46	46	See a)
	950 – 2 150	For frequencies ≤1 GHz Quasi Peak/ 120 kHz	46	54	54]
A12.2	950 – 2 150		46	54	54	See b)
A12.3	30 – 300		46	54	50	See c)
	300 – 1 000				52]
A12.4	30 – 300	For frequencies ≥1 GHz	46	66	59	See d)
	300 – 1 000				52]
A12.5	30 – 950	Peak/ 1 MHz	46	76	46	See e)
	950 – 2 150	1 11112		n/a	54]

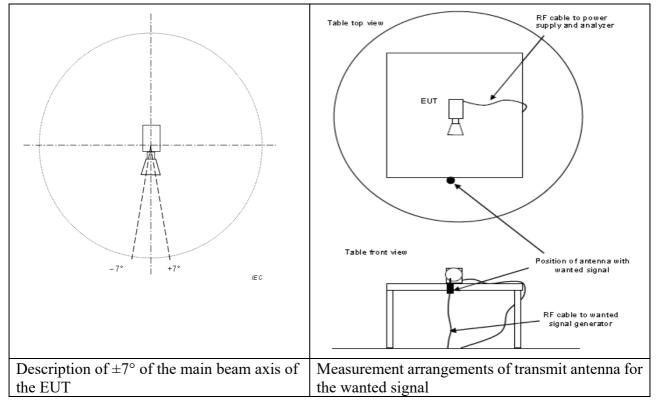
a) Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.

b) Tuner units (not the LNB) for satellite signal reception.

c) Frequency modulation audio receivers and PC tuner cards.

d) Frequency modulation car radios.

e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.


******Remarks: It is not necessary to be tested on this item.

7. Outdoor units of home satellite receiving systems

7.1 Test Setup and Procedure

7.1.1 Test Setup

7.1.2 Test Procedure

The input signal shall be adjusted to get the maximum rated output level from the EUT. For the measurement in the frequency range from 30 MHz to 18 GHz the input signal shall be adjusted so that the output frequency is within this frequency range. For the measurement in the frequency range above 1 GHz, the frequency of the input signal shall be adjusted in such a way that the EUT is measured, as a minimum, at the lowest, middle and highest rated output frequency within the measured frequency range.

7.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz1000MHz	
Detector Function:	Quasi-Peak Mode	
Resolution Bandwidth:	120kHz	
Frequency Range:	Above 1000MHz	
Detector Function:	Peak/Average Mode	
Resolution Bandwidth:	1MHz	

7.1.4 Limit

Table Clause	Frequency Range MHz	Measurem ent			Class B	Applicable to
		Facility (see Table A.1)	Distance m	Detector type / Bandwidth	Limits	
A7.1	30 to 1 000	SAC / OATS / FAR	See Table A.4	Quasi Peak / 120 kHz	See Table A.4	
A7.2	1 000 to 2 500	FSOATS	3	Average / 1 MHz	50 dB(µV/m)	LO leakage and spurious radiated emissions from the EUT, in the region outside ±7° of the main beam axis. See Figure H.1
	2 500 to 18 000				64 dB(µV/m)	
A7.3	1 000 to 18 000	FSOATS	3	Average / 1 MHz	37 dB(µV/m)	LO leakage from the EUT, in the region within ±7° of the main beam axis. See Figure H.1
A7.4	1 000 to 18 000	Conducted (Clause H.4)	n/a	Average / 1 MHz	30 d BpVV	

For radiated emissions measurements at frequencies up to 1 GHz, the requirements defined in Table A.4 shall be satisfied.

Apply the appropriate limits across the entire frequency range.

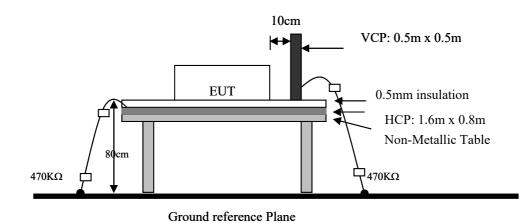
Apply the limits defined in table Clause A7.1 and A7.2. Also apply the limits defined in either table Clause A7.3 or A7.4.

****Remarks:** It is not necessary to be tested on this item.

8. Electrostatic discharge (ESD) immunity

8.1 Test Specification and Setup

8.1.1 Test Specification


Enclosure	
EN 61000-4-2/ IEC 61000-4-2	
(details referred to Sec 1.2)	
Air +/- 2 kV, +/- 4 kV, +/- 8 kV	
Contact +/- 4 kV	
В	
refer to ISL QA -T4-E-S7	
22 °C	
40%	

Selected Test Point

- Air: discharges were applied to slots, aperture or insulating surfaces. 10 single air discharges were applied to each selected points.
- Contact: 10 discharges minimum were to the selected contact points.
- Indirect Contact Points: 10 discharges were applied to center of one edge of VCP and each EUT side of HCP with 10 cm away from EUT.

8.1.2 Test Setup

EUT is 1m from the wall and other metallic structure. When Battery test mode is needed, a cable with one $470K\Omega$ resister at two rare ends is connected from metallic part of EUT and screwed to HCP.

8.1.3 Test Result

Performance of EUT complies with the given specification

8.2 Test Point

Red arrow lines indicate the contact points, and blue arrow lines indicate the air points.

Figure 2 : Test Point Assignments Discharge:

International Standards Laboratory Corp.

Figure 3 : Test Point Assignments Discharge:

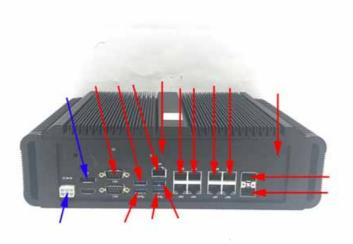
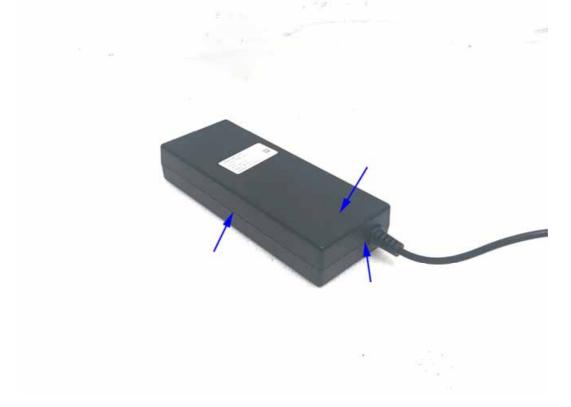
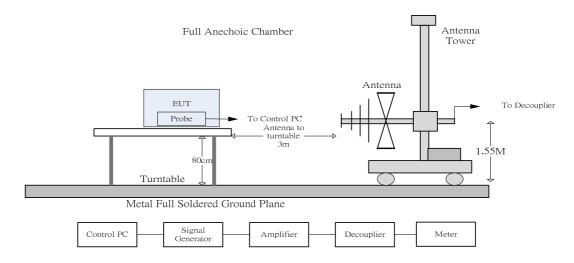



Figure 4 : Test Point Assignments Discharge:

8.3 Test Setup Photo

9. Radio-Frequency, Electromagnetic Field immunity


9.1 Test Specification and Setup

9.1.1 Test Specification

I		
Port:	Enclosure	
Basic Standard:	EN 61000-4-3/ IEC 61000-4-3	
	(details referred to Sec 1.2)	
Test Level:	3 V/m	
Modulation:	AM 1kHz 80%	
Frequency range:	80 MHz~1 GHz	
	1800MHz, 2600MHz, 3500MHz,	
	5000MHz	
Frequency Step:	1% of last step frequency	
Dwell time:	3s	
Polarization:	Vertical and Horizontal	
EUT Azimuth Angle	$\boxtimes 0^{\circ} \boxtimes 90^{\circ} \boxtimes 180^{\circ} \boxtimes 270^{\circ}$	
Criteria:	Α	
Test Procedure	refer to ISL QA -T4-E-S8	
Temperature:	21°C	
Humidity:	63%	

9.1.2 Test Setup

The field sensor is placed at one calibration grid point to check the intensity of the established fields on both polarizations. EUT is adjusted to have each side of EUT face coincident with the calibration plane. A CCD camera and speakers are used to monitor the condition of EUT for the performance judgment.

9.1.3 Test Result

Performance of EUT complies with the given specification

9.2 Test Setup Photo

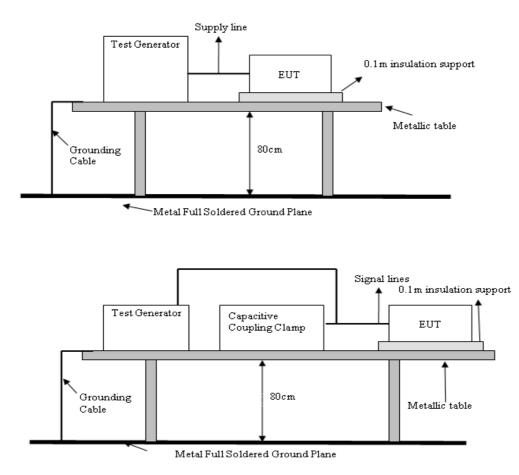
10. Electrical Fast transients/burst immunity

10.1 Test Specification and Setup

Port:	AC mains; Twisted Pair LAN Port	
Basic Standard:	EN 61000-4-4/ IEC 61000-4-4	
	(details referred to Sec 1.2)	
Test Level:	AC Power Port: +/- 1 kV	
	Twisted Pair LAN Port (I/O Cables): +/- 0.5 kV	
Rise Time:	5ns	
Hold Time:	50ns	
Burst Period:	300ms	
Repetition Frequency:	5kHz	
Criteria:	В	
Test Procedure	refer to ISL QA -T4-E-S9	
Temperature:	22 °C	
Humidity:	61%	

10.1.1 Test Specification

<u>Test Procedure</u> The EUT was setup on a nonconductive table 0.1 m above a reference ground plane.


Test Points	Polarity	Result	Comment
Line	+	Ν	60 sec
	-	Ν	60 sec
Neutral	+	Ν	60 sec
	-	Ν	60 sec
Ground	+	Ν	60 sec
	-	Ν	60 sec
Line to	+	Ν	60 sec
Neutral	-	Ν	60 sec
Line to	+	Ν	60 sec
Ground	-	Ν	60 sec
Neutral to	+	Ν	60 sec
Ground	-	Ν	60 sec
Line to Neutral	+	Ν	60 sec
to Ground	-	Ν	60 sec
Capacitive coupling	+	Ν	60 sec
clamp	-	Ν	60 sec

Note: 'N' means normal, the EUT function is correct during the test.

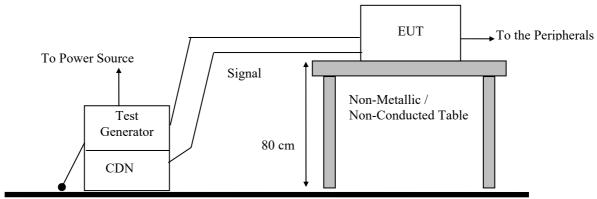
10.1.2 Test Setup

EUT is at least 50cm from the conductive structure.

10.1.3 Test Result

Performance of EUT complies with the given specification

10.2 Test Setup Photo


11. Surge Immunity

11.1 Test Specification and Setup

11.1.1 Test Specification

Port:	AC mains
Basic Standard:	EN 61000-4-5/ IEC 61000-4-5
	(details referred to Sec 1.2)
Test Level:	Line to Line:
	+/- 0.5 kV, +/- 1 kV
	Line to Earth:
	+/- 0.5 kV, +/- 1 kV, +/- 2kV
Rise Time:	1.2us
Hold Time:	50us
Repetition Rate:	30 seconds
Angle:	$\Box 0^{\circ} \boxtimes 90^{\circ} \Box 180^{\circ} \boxtimes 270^{\circ}$
Criteria:	В
Test Procedure:	refer to ISL QA -T4-E-S10
Temperature:	22°C
Humidity:	63%

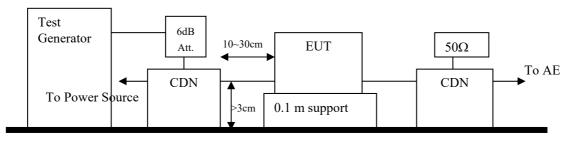
11.1.2 Test Setup

Metal Full Soldered Ground Plane

11.1.3 Test Result

Performance of EUT complies with the given specification

11.2 Test Setup Photo


12. Immunity to Conductive Disturbance

12.1 Test Specification and Setup

12.1.1 Test Specification

Port:	AC mains; Twisted Pair LAN Port
Basic Standard:	EN 61000-4-6/ IEC 61000-4-6
	(details referred to Sec 1.2)
Frequency range and Test Level:	0.15MHz to 10MHz: 3 V
	10MHz to 30MHz: 3V to 1V
	30MHz to 80MHz: 1V
Modulation:	AM 1kHz 80%
Frequency Step:	1% of last Frequency
Dwell time:	3s
Criteria:	А
CDN Type:	CDN M2+M3, CDN T8
Test Procedure	refer to ISL QA -T4-E-S11
Temperature:	22°C
Humidity:	61%

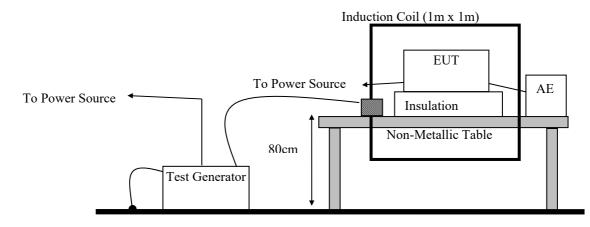
12.1.2 Test Setup

Reference Ground Plane

12.1.3 Test Result

Performance of EUT complies with the given specification

12.2 Test Setup Photo


13. Power Frequency Magnetic Field immunity

13.1 Test Specification and Setup

13.1.1 Test Specification

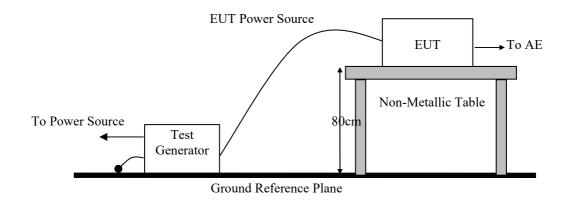
Port:	Enclosure
Basic Standard:	EN 61000-4-8/ IEC 61000-4-8
	(details referred to Sec 1.2)
Test Level:	1A/m
Polarization:	X, Y, Z
Criteria:	Α
Test Procedure	refer to ISL QA -T4-E-S12
Temperature:	22°C
Humidity:	62%

13.1.2 Test Setup

13.1.3 Test Result

Performance of EUT complies with the given specification

****Remarks:** It is not necessary to be tested on this item.


14. Voltage Dips, Short Interruption and Voltage Variation immunity

14.1 Test Specification and Setup

14.1.1 Test Specification

Port:	AC mains
Basic Standard:	EN 61000-4-11/ IEC 61000-4-11
	(details referred to Sec 1.2)
Test Level:	>95% in 0.5 cycle
Criteria:	В
Test Level:	30% in 25 cycle
Criteria:	С
Test Level:	>95% in 250 cycle
Criteria:	С
Phase:	0°; 180°
Test intervals:	3 times with 10s each
Test Procedure	refer to ISL QA -T4-E-S13
Temperature:	21°C
Humidity:	62%

14.1.2 Test Setup

14.1.3 Test Result

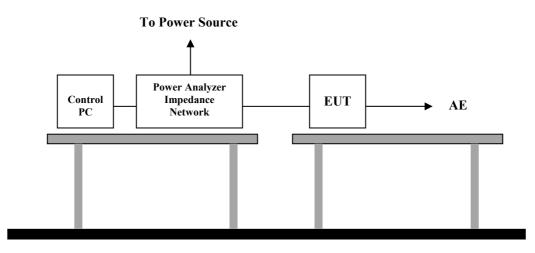
Performance of EUT complies with the given specification

14.2 Test Setup Photo

15. Harmonics

15.1 Test Specification and Setup

15.1.1 Test Specification


Port:	AC mains
Active Input Power:	>75W
Basic Standard:	EN 61000-3-2/IEC 61000-3-2
	(details referred to Sec 1.2)
Test Duration:	2.5min
Class:	A
Test Procedure	refer to ISL QA -T4-E-S14
Temperature:	22°C
Humidity:	61%

Test Procedure

The EUT is supplied in series with shunts or current transformers from a source having the same nominal voltage and frequency as the rated supply voltage and frequency of the EUT. The EUT is configured to its rated current with additional resistive load when the testing is performed.

Equipment having more than one rated voltage shall be tested at the rated voltage producing the highest harmonics as compared with the limits.

15.1.2 Test Setup

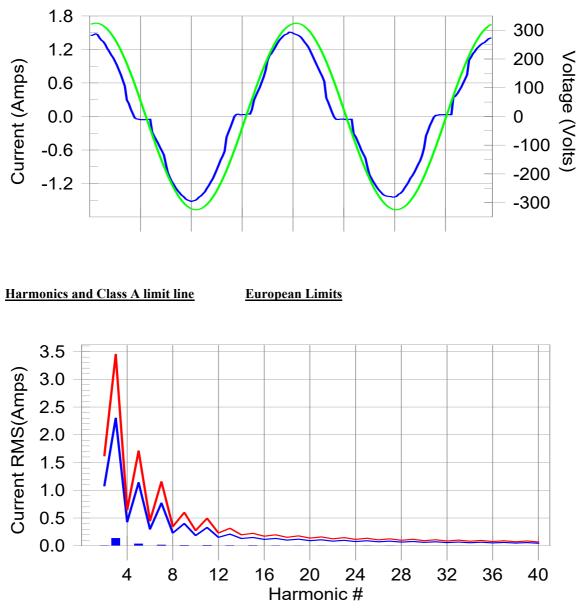
15.1.3 Limit

Limits of Class A Harmonics Currents

Harmonics Order	Maximum Permissible	Harmonics Order	Maximum Permissible harmonic current
Oldel	harmonic current	Oldel	
n	A	n	A
Od	d harmonics	Eve	en harmonics
3	2.30	2	1.08
5	1.14	4	0.43
7	0.77	6	0.30
9	0.40	$8 \le n \le 40$	0.23 * 8/n
11	0.33		
13	0.21		
$15 \le n \le 39$	0.15 * 15/n		

15.1.4 Test Result

Performance of EUT complies with the given specification.



15.2 Test Data: Configuration Harmonics – Class-A per Ed. 4.0 (2014)(Run time)

Test duration (min): 3 Data file name: CTSMXL_H-001420.cts_data

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Test result: Pass Worst harmonics H19-6.2% of 150% limit, H3-6% of 100% limit.

-82-

Current Test Result Summary (Run time)

Test dur	Test duration (min): 3Data file name: CTSMXL_H-001420.cts_data						
Test Res THC	ult: Pass (A): 0.144	Source qualifi I-THD(%): 2		mal HC(A): 0.009	POHC Limi	t(A): 0.251	
Highest	oarameter valu	ies during test	:				
5	V_RMS (Volts): 229.784		Frequency(Hz):			
	[_Peak (Amps)			I_RMS (Amps):			
	[_Fund (Amps)			Crest Factor:	2.820		
	Power (Watts)	: 135.2		Power Factor:	0.955		
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.006	1.080	0.5	0.009	1.620	0.6	Pass
3	0.137	2.300	6.0	0.144	3.450	4.2	Pass
4	0.001	0.430	N/A	0.002	0.645	N/A	Pass
5	0.036	1.140	3.2	0.044	1.710	2.6	Pass
6	0.001	0.300	N/A	0.002	0.450	N/A	Pass
7	0.016	0.770	2.1	0.021	1.155	1.8	Pass
8 9	0.001	0.230	N/A	0.001	0.345	N/A	Pass
	0.010 0.001	0.400	2.6 N/A	0.017	0.600 0.276	2.8 N/A	Pass
10 11	0.001	0.184 0.330	N/A 3.2	0.001 0.012	0.276	N/A 2.5	Pass Pass
11	0.010	0.153	3.2 N/A	0.012	0.493	2.3 N/A	Pass
12	0.007	0.135	3.3	0.001	0.250	2.4	Pass
13	0.000	0.131	N/A	0.000	0.197	N/A	Pass
15	0.006	0.150	4.2	0.009	0.225	3.9	Pass
16	0.000	0.115	N/A	0.001	0.173	N/A	Pass
17	0.006	0.132	4.2	0.008	0.198	4.0	Pass
18	0.001	0.102	N/A	0.001	0.153	N/A	Pass
19	0.005	0.118	4.3	0.011	0.178	6.2	Pass
20	0.001	0.092	N/A	0.001	0.138	N/A	Pass
21	0.005	0.107	N/A	0.009	0.161	N/A	Pass
22	0.001	0.084	N/A	0.001	0.125	N/A	Pass
23	0.004	0.098	N/A	0.005	0.147	N/A	Pass
24	0.001	0.077	N/A	0.001	0.115	N/A	Pass
25 26	0.003	0.090	N/A	0.006	0.135	N/A	Pass
26 27	0.001 0.003	0.071 0.083	N/A N/A	0.001 0.005	0.107 0.125	N/A N/A	Pass Pass
27	0.003	0.065	N/A	0.003	0.123	N/A	r ass Pass
28 29	0.000	0.000	N/A	0.001	0.099	N/A	Pass
2) 30	0.000	0.078	N/A	0.000	0.092	N/A	Pass
31	0.003	0.073	N/A	0.001	0.109	N/A	Pass
32	0.000	0.058	N/A	0.001	0.086	N/A	Pass
33	0.002	0.068	N/A	0.003	0.102	N/A	Pass
34	0.000	0.054	N/A	0.001	0.081	N/A	Pass
35	0.002	0.064	N/A	0.003	0.096	N/A	Pass
36	0.000	0.051	N/A	0.000	0.077	N/A	Pass
37	0.002	0.061	N/A	0.003	0.091	N/A	Pass
38	0.000	0.048	N/A	0.001	0.073	N/A	Pass
39	0.002	0.058	N/A	0.003	0.087	N/A	Pass
40	0.000	0.046	N/A	0.001	0.069	N/A	Pass

-83-

15.3 Test Setup Photo

Refer to the Setup Photo for Voltage Fluctuations

16. Voltage Fluctuations

16.1 Test Specification and Setup


16.1.1 Test Specification

-		
Port:	AC mains	
Basic Standard:	EN 61000-3-3/IEC 61000-3-3	
	(details referred to Sec 1.2)	
Test Procedure	refer to ISL QA -T4-E-S14	
Observation period:	For Pst 10min	
	For Plt 2 hours	
Temperature:	22°C	
Humidity:	61%	

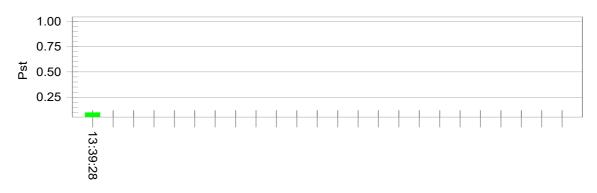
Test Procedure

The EUT is supplied in series with reference impedance from a power source with the voltage and frequency as the nominal supply voltage and frequency of the EUT.

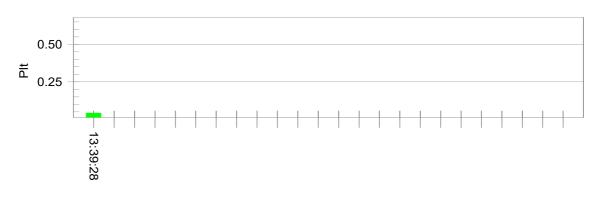
16.1.2 Test Setup

16.1.3 Test Result

Performance of EUT complies with the given specification.


16.2 Test Data: Configuration

Flicker Test Summary per EN/IEC61000-3-3 Ed. 3.0 (2013) (Run time)


Test duration (min): 10Data file name: CTSMXL_F-001419.cts_dataTest Result: PassStatus: Test Completed

Psti and limit line

European Limits

Plt and limit line

Parameter values recorded during	the test:
Vrms at the end of test (Volt):	229.73
T-max (mS):	0.0
Highest dc (%):	0.00
Highest dmax (%):	0.08
Highest Pst (10 min. period):	0.097
Highest Plt (2 hr. period):	0.042

Test limit (mS):	500.0	Pass
Test limit (%):	3.30	Pass
Test limit (%):	4.00	Pass
Test limit:	1.000	Pass
Test limit:	0.650	Pass

16.3 Test Setup Photo

17. Appendix

17.1 Appendix A: Test Equipment

17.1.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
Con02					Date	Date
Conduction 02	LISN 26	R&S	ENV216	102378	11/21/2018	11/21/2019
Conduction 02	LISN 20	R&S	ENV216	101477	07/31/2019	07/31/2020
Conduction 02	Conduction 02-1 Cable	WOKEN	CFD 300-NL	Conduction 02 -1	09/11/2019	09/11/2020
Conduction 02	EMI Receiver 14	ROHDE& SCHWARZ	ESCI	101034	05/31/2019	05/31/2020
Conduction 02	ISN T8 10	Teseq GmbH	ISN T800	42773	08/02/2019	08/02/2020

Location Chamber02	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Radiation (Chamber02)	BILOG Antenna 17	Schwarzbeck	Schwarzbeck VULB 9168+EMCI-N -6-05	645	03/06/2019	03/06/2020
Radiation (Chamber02)	Preamplifier 25	EMCI	EMC9135	980295	02/27/2019	02/27/2020
Radiation (Chamber02)	Coaxial Cable Chmb 02-10M-02	EMC		Chmb 02-10M-02	09/16/2019	09/16/2020
Radiation (Chamber02)	EMI Receiver 12	ROHDE & SCHWARZ	ESCI	100804	08/30/2019	08/30/2020

Location	Equipment Name	Brand	Model	S/N	Last Cal.	Next Cal.
Chmb14					Date	Date
Rad. Above 1GHz	Spectrum Analyzer 25	R&S	FSV 40	101499	11/03/2019	11/03/2020
Rad. Above 1GHz	Horn Antenna 13	ETS-Lindgren	3117	0161229	09/09/2019	09/09/2020
Rad. Above 1GHz		EMC INSTRUMENT	EMC051845/E MCI-S-18-06	980084/AT-S 18001	03/21/2019	03/21/2020
Rad. Above 1GHz	Microwave Cable 35	WOKEN	WCBA-WCA0 4NM.SM6	Chamber 14-1	01/31/2019	01/31/2020
Rad. Above 1GHz	Microwave Cable 36		WCBA-WCA0 4NM.SM0.8	Chamber 14-2	01/31/2019	01/31/2020

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
EN61K-4-2	ESD Gun 12	EM TEST	Dito	P1650188689	05/07/2019	05/07/2020
EN61K-4-3	Broadband Log-Periodic Antenna	AR	AT1080	310698	N/A	N/A
EN61K-4-3	Horn Antenna RF-01	AR	ATS700M11 G	0335864	N/A	N/A
EN61K-4-3	Amplifier 80Mz~1GHz 250W	AR	250W1000A	312494	N/A	N/A
EN61K-4-3	Amplifier 800MHz~4.2GHz 50W	AR	50S1G4M1	312762	N/A	N/A
EN61K-4-3	Amplifier 4.0~8.0GHz 35W	AR	35S4G8AM1	0335752	N/A	N/A
EN61K-4-3	Broadband Coupler 80M~1GHz	Amplifier Research	DC6180A	0341805	N/A	N/A
EN61K-4-3	Coaxial Cable	INSULATED	NPS-4806-23 60-NP3	108599.003.01.0 3	N/A	N/A
EN61K-4-3	Broadband Coupler 0.8G~4.26GHz	AR	DC7144A	0335226	N/A	N/A
EN61K-4-3	Broadband Coupler 4G~8GHz	AR	DC7350A	0335817	N/A	N/A
EN61K-4-3	Signal Generator 07	ROHDE& SCHWARZ	SMB100A	107780	10/28/2019	10/28/2020
EN61K-4-4	EFT and SURGE Test System	EM TEST	UCS-500 M6B	V0728102674	02/14/2019	02/14/2020
EN61K-4-4	Capacitive Coupling Clamp	EM TEST	HFK	0907-106	02/14/2019	02/14/2020
EN61K-4-5	CDN-UTP8 ED3	EMC-PARTNER	CDN-UTP8	1509	04/02/2019	04/02/2020
EN61K-4-5	SURGE-TESTER	EMC Partner	MIG0603IN3	523	04/02/2019	04/02/2020
EN61K-4-6	CDN M2+M3 04	TESEQ	CDN M016	43257	09/10/2019	09/10/2020
EN61K-4-6	CDN T2 04	FCC Inc.	FCC-801-T2	02067	08/14/2019	08/14/2020
EN61K-4-6	CDN T4 06	FCC Inc.	FCC-801-T4	02068	06/24/2019	06/24/2020
EN61K-4-6	CDN T8-10 2	Teseq GmbH	CDN T8 10	41241	03/26/2019	03/26/2020
EN61K-4-6	Coaxial Cable 4-6 02-1			4-6 02-1	N/A	N/A
EN61K-4-6	Conducted Immunity Test System 02	Frankonia	CIT-10-75-D C	126B1301/2014	03/25/2019	03/25/2020
EN61K-4-6	EM-Clamp	Schaffner	KEMZ-801	19215	11/08/2018	11/08/2019
EN61K-4-8	Magnetic Field Immunity Loop	FCC	F-1000-4-8-L- 1M		05/27/2019	06/05/2020
EN61K-4-8		FCC	F-1000-4-8-G -125A	01038	05/27/2019	06/05/2020
EN61K-4-11	Voltage Dip and UP Simulator 01	NoiseKen	VDS-2002	VDS1750439	09/25/2019	09/25/2020
EN61K-3-2/3, EN61K-3-11-1 2	(Harmonic/Flicker) MX Series CTSH Compliance Test System	California Instruments	MX60T04GH 10400	72793	08/05/2019	08/05/2020

PS: $N/A \Rightarrow$ The equipment does not need calibration.

Test Item	Filename	Version
EN61000-3-2	California Instruments	CTSMXL V2.19.0
EN61000-3-3	California Instruments	CTSMXL V2.19.0
EN61000-4-2	N/A	2.0
EN61000-4-3	i2	4.130102k
EN61000-4-4	EMC TEST	4.10
EN61000-4-5	EMC Partner	1.69
EN61000-4-6	FRANKONIA CD-LAB	V5.221
EN61000-4-8	N/A	
EN61000-4-11	NOISE KEN	2.0

****Software for Controlling Spectrum/Receiver and Calculating Test Data**

Site	Filename	Version	Issue Date
Conduction/Radiation	EZ EMC	ISL-03A2	3/6/2013

17.2 Appendix B: Uncertainty of Measurement

The laboratory measurement uncertainty accordance with refers to CISPR 16-4-2. If Ulab is less than or equal to Ucispr in Table 1, then the test report may either state the value of Ulab or state that Ulab is less than Ucispr.

The coverage factor k = 2 yields approximately a 95 % level of confidence.

<Conduction 02> AMN: ±2.90dB ISN T8: ±3.05dB <Chamber 02 (10M)> Horizontal 30MHz~200MHz: ±4.69dB 200MHz~1000MHz: ±4.30dB Vertical 30MHz~200MHz: ±4.65dB 200MHz~1000MHz: ±4.35dB

<Chamber 14 (3M)> 1GHz~6GHz: ±5.12dB

-92-

<immunity 02=""></immunity>			
Test item	Uncertainty	Test item	Uncertainty
EN 61000-4-2 (ESD)		EN 61000-4-6 (CS)	
Rise time tr	$\leq 15\%$	CDN	± 1.36dB
Peak current Ip	$\leq 6.3\%$	EM Clamp	± 3.19dB
current at 30 ns	$\leq 6.3\%$	EN 61000-4-8 (Magnetic)	$\pm 6.55\%$
current at 60 ns	$\leq 6.3\%$	EN 61000-4-11 (Dips)	
EN 61000-4-3 (RS)	$\pm 2.19 dB$	Time	$\pm 2.80\%$
EN 61000-4-4 (EFT)		Voltage	± 1.5%
voltage rise time (tr)	$\pm 6.2\%$	EN 61000-3-2 (Harmonics)	± 5.1 %
peak voltage value (VP)	$\pm 8.6\%$	EN 61000-3-3 (Fluctuations and Flicker)	± 5.1 %
voltage pulse width (tw)	± 5.9%	EN 61000-3-12 (Harmonics)	±1%
EN 61000-4-5 (Surge)		EN 61000-3-11 (Fluctuations and Flicker)	±8%
open-circuit voltage front time	±1.2µs	EN 61000-4-34 (Dips)	
open-circuit voltage peak value	±8.6%	Time	± 2.80%
open-circuit voltage duration (Td)	$\pm 50.7 \mu s$	Voltage	± 1.70%
EN 61000-4-9 (Pulse magnetic field)		IEC 61000-4-17 (Ripple)	
Time	$\pm 2.80\%$	Voltage	$\pm 17 \ \mu V/V$
Voltage	$\pm 5.5\%$	Current	± 0.83 mA/A
Current	$\pm 3.3\%$	IEC 61000-4-18 (Damped oscillatory wave)	
IEC 61000-4-16 (conducted, common mode)		Time	± 2.80%
Time	$\pm 2.80\%$	Voltage	$\pm 5.5\%$
Voltage	$\pm 5.5\%$	Current	$\pm 4.5\%$
Current	$\pm 3.3\%$	IEC 61000-4-29 (Voltage dips on d.c)	
Resistor	$\pm 0.03 \ m\Omega/\Omega$	Voltage	$\pm 17 \ \mu V/V$
Capacitor	$\pm 24 \ \mu F/F$	Current	± 0.83 mA/A

m_{1} .т.

International Standards Laboratory Corp.

17.3 Appendix C: Photographs of EUT

Please refer to the File of ISL-19LE676P

International Standards Laboratory Corp.